Mark Scheme for June 2010
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | For included angle marked α or for $0.8(10.5 - 8.5\cos \alpha) = 4\cos \beta$ For opposite side marked 4/0.8 (or 4) or for $-- 0.8 \times 8.5 \sin \alpha = 4 \sin \beta$
| | $8.4^2 + 6.8^2 - 2 \times 8.4 \times 6.8 \cos \alpha = 4^2$
| | $\alpha = 28.1^\circ$ |
| 2(i) | [100$a = 2aV_B$]
| | Vertical component at B is 50 N
| | Vertical component at C is 150 N |
| 2(ii) | $100(0.5a) + (\sqrt{3} a)F = 150a$ or $100a + 100(1.5a) = 150a + (\sqrt{3} a)F$
| | Frictional force is 57.7 N
| | Direction is to the right |
| 3(i) | $u = 4$
| | $v = 2$ |
| 3(ii) | $mu = ma + mb$ (or $u = b - a$)
| | $u = b - a$ (or $mu = ma + mb$)
| | $a = 0$ and $b = 4\text{ms}^{-1}$
| | Speed of A is 2$m\text{s}^{-1}$ and direction at 90$^\circ$ to the wall
| | Speed of B is 4$m\text{s}^{-1}$ and direction parallel to the wall |
| 4(i) | $0.25 \frac{dv}{dt} = \frac{3}{50} - \frac{t^2}{2400}$ |
| | $v = 12t/50 - \frac{t^3}{1800}$
| | $v(12) = 1.92$ |
| | $0.25 \frac{dv}{dt} = \frac{t^2}{2400} - \frac{3}{50}$
| | $v = \frac{t^3}{1800} - 12t/50 + C_2$
| | $[1.92 = 0.96 - 2.88 + C_2]$ |
| | $v = \frac{t^3}{1800} - 12t/50 + 3.84$
| | $v(24) = 5.76 = 3 \times v(12)$ |
(ii) Sketch has $v(0) = 0$ and slope decreasing (convex upwards) for $0 < t < 12$
Sketch has slope increasing (concave upwards) for $12 < t < 24$
Sketch has $v(t)$ continuous, single valued and increasing (except possibly at $t = 12$) with $v(24)$ seen to be $> 2v(12)$
B1 B1 B1 [3]

5(i) For using amplitude as a coefficient of a relevant trigonometric function.
For using the value of ω as a coefficient of t in a relevant trigonometric function.
$x_1 = 3\cos t$ and $x_2 = 4\cos 1.5t$
B1 B1 B1 [3]

(ii) Part distance is 20m
$[20 - (-3.62)]$
Distance travelled by P_2 is 23.6 m

(iii) \[\dot{x}_1 = -3\sin t; \dot{x}_2 = -6\sin 1.5t \]
$v_1 = 0.867, v_2 = -2.55$; opposite directions
For differentiating x_1 and x_2
For evaluating when $t = 5.99$ (must use radians)

Alternative for (iii):
\[v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2] \]
$[\pi < 5.99 < 2\pi \Rightarrow v_1 > 0, 4\pi/3 < 5.99 < 2\pi \Rightarrow v_2 < 0]$
$v_1 = 0.867, v_2 = -2.55$; opposite directions
For using $v^2 = \pi^2(a^2 - x^2)$ (must use radians to find values of x)
For using the idea that v starts –ve and changes sign at intervals of $T/2$ s

6(i) PE loss at lowest allowable point = 25W
EE gain = $32000x5^2/(2\times20)$
$[25W = 20000]$
Value of W is 800
B1 M1 A1 A1 [5]

(ii) $[800 = 32000x/20]$
$\frac{1}{2} (800/9.8)v^2$
$= 800 \times 20.5 - 32000x0.5^2/(2\times20)$
Maximum speed is 19.9ms$^{-1}$
M1 M1 A1 A1 [4]

(iii) \[(800)x/g = 800 - 32000 \times 5/20 \]
Max. deceleration is 88.2 ms$^{-2}$
M1 A1 A1 [3]
7(i)
\[
\frac{1}{2} m v^2 - \frac{1}{2} m 6^2 = mg(0.7) \\
\text{Speed of P before collision is } 7.05\text{ms}^{-1} \\
\text{Coefficient of restitution is } 0.695
\]

- **M1**
- **A1**
- **B1**

For using the principle of conservation of energy for P (3 terms needed)

- ft \(4.9 \div \text{speed of P before collision}\)

7(ii)
\[
\frac{1}{2} m v^2 = \frac{1}{2} m 4.9^2 - mg0.7(1 - \cos \theta) \\
v^2 = 3.43(3 + 4 \cos \theta) \\
T - m9.8\cos \theta = mv^2/0.7
\]

- **M1**
- **A1**

For using the principle of conservation of energy for Q

Accept any correct form

For using Newton's second law radially with \(a_r = v^2/r\)

For substituting for \(v^2\)

- **AG**

7(iii)
\[
T = 0 \Rightarrow \theta = 120^\circ
\]

- **B1**

Radial acceleration is \((\pm)4.9\ \text{ms}^{-1}\) or

transverse acceleration is \((\pm)8.49\ \text{ms}^{-1}\)

Radial acceleration is \((\pm)4.9\ \text{ms}^{-1}\) and

transverse acceleration is \((\pm)8.49\ \text{ms}^{-1}\)

- **M1**
- **A1**
- **B1**

For using \(a_r = -g\cos \theta\)

\{or \(3.43(3 + 4\cos \theta)/0.7\}\}

or \(a_t = -g\sin \theta\)

SR for candidates with a sin/cos mix in the work for M1 A1 B1 immediately above. (max. 1/3)

Radial acceleration is \((\pm)8.49\ \text{ms}^{-1}\) and

transverse acceleration is \((\pm)4.9\ \text{ms}^{-1}\)

- **B1**

7(iv)
\[
V^2 = 3.43\{3 + 4(-0.5)\} \times 0.5^2 \text{ or} \\
V^2 = (-g\cos120^\circ\times 0.7) \times \cos^260^\circ
\]

- **M1**
- **A1**

For using \(V = v(120^\circ)\times \cos60^\circ\)

- **AG**

For using the principle of conservation of energy

\[
mgH = \frac{1}{2} m(4.9^2 - 0.8575) \text{ or} \\
mg(H - 1.05) = \frac{1}{2} m(3.43 - 0.8575)
\]

Greatest height is 1.18 m

- **M1**
- **A1**

For using \(V = v(120^\circ)\times \cos60^\circ\)

- **AG**

For using the principle of conservation of energy