Mark Scheme for June 2010
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
| 1 | \(v^2 = 2 \times 9.8 \times 10\)
\(v = 14\) m s\(^{-1}\)
speed = \(\sqrt{(7^2 + 14^2)}\)
15.7 or 7√5 m s\(^{-1}\)
tan\(^{-1}\)(14/7) or tan\(^{-1}\)(7/14)
63.4° to the horizontal | M1
A1
M1
A1
M1
A1
6 | Using \(v^2 = u^2 + 2as\) with \(u = 0\)
Method to find speed using their “\(v\)”
Method to find angle using their “\(v\)”
26.6° to vertical |
|---|---|---|---|
| 2 (i) | \((6\sin \pi/2) \div (\pi/2)\)
3.82 | M1
A1
2 | Use of correct formula AG |
| (ii) | \(8d = 3(6-3.82) + 5\times 9.82\)
or \(8x = \pm \{3(-3.82) + 5\times 3.82\}\)
d = 6.95 or 6.96 or \(x = \pm 0.955\)
tan\(0° = 0.96/6\)
\(0° = 9°\) | M1
A1
A1
M1
A1
5 | Method to find centre of mass
Attempt to find the required angle
7 |
| 3 (i) | \(D = 128\) 000/80 (= 1600)
\(k(80)^2 = 128\) 000/80
k = \(1/4\)
\(R = 900\) N | B1
M1
A1
A1
B1
5 | Driving force = resistance
FT on their \(k\) (\(R = 3600k\)) |
| (ii) | \(D = 128\) 000 / 60 (= 2133½)
2000 x 9.8 x sin2°
6400/3-900-2000 x 9.8 x sin2° = 2000a
a = 0.275 m s\(^{-2}\) | B1
B1
M1
A1
4 | 4 terms required
9 |
| 4 (i) | \(4T\cos20° = 5 \times g \times 2.5\)
\(T = 32.6\) N | M1
A1
A1
3 | Using moments; allow sin/cos mix
Allow with omission of g |
| (ii) | \(X = T\sin20°\)
\(X = 11.1\)
\(Y + T\cos20° = 5 \times g\)
or 2.5\(Y = 1.5 \times T\cos20\) or 4\(Y = 1.5 \times 5g\)
\(Y = 18.4\)
\(R = \sqrt{(X^2 + Y^2)}\) or tan\(^{-1}\)(Y/X)
or tan\(^{-1}\)(X/Y)
\(R = 21.5\) N
\(0° = 58.8°\) above the horizontal | M1
A1
M1
A1
M1
A1
A1
7 | allow sin/cos mix
FT their \(T\)
FT their \(T\), but not from omission of \(g\)
\(X ≠ 0, Y ≠ 0\)
or 31.2° to left of vertical
10 |
<table>
<thead>
<tr>
<th></th>
<th>5 (i)</th>
<th>6 (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tcos45° + Rsin45° = mg</td>
<td>2mu = 2mv + 3mv</td>
<td></td>
</tr>
<tr>
<td>Tsin45° - Rcos45° = mlsin45°ω²</td>
<td>v = 2/5 u</td>
<td></td>
</tr>
<tr>
<td>2T = √2mg + mlo²</td>
<td>e = (3v – v) / u</td>
<td></td>
</tr>
<tr>
<td>T = m/2(√2g + lo²)</td>
<td>e = 4/5</td>
<td></td>
</tr>
<tr>
<td>3 terms</td>
<td>Conservation of momentum</td>
<td></td>
</tr>
<tr>
<td>3 terms; a = r ω²</td>
<td>Must be v =</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(ii)</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 0</td>
<td>Using restitution</td>
<td></td>
</tr>
<tr>
<td>2R = √2mg - mlo²</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>or Tcos45° = mg</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>or T = mlo²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solve to find ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω = 4.16 rad s⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(iii)</th>
<th>(iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial K.E. = 9mv² / 2 = 18mu² /25</td>
<td>4mu / 5 – 3mu /5 = 2mx + my</td>
<td></td>
</tr>
<tr>
<td>Final K.E. = 9mv² / 8 = 9mu² /50</td>
<td>u / 5 = 2x + y</td>
<td></td>
</tr>
<tr>
<td>½m (V)² = Final K.E.</td>
<td>e = 4/5 = (v – x) / u</td>
<td></td>
</tr>
<tr>
<td>V = 3 u /5</td>
<td>4u = 5y – 5x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>FT on their v from (i)</td>
<td>solving 2 relevant equations</td>
<td></td>
</tr>
<tr>
<td>FT on their v from (i)</td>
<td>x = -u/5 y = 3u/5</td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td>y = 3u/5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>both</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 7 (i) | \[R = 0.2 \times 9.8 \times \cos 30^\circ = (1.70) \]
\[F = 0.1 \times 9.8 \times \cos 30^\circ = (0.849) \]
\[\frac{1}{2} \times 0.2 \times 11^2 - \frac{1}{2} \times 0.2 \times v^2 = \]
\[0.2 \times 9.8 \times 5 \sin 30^\circ + 5 \times 0.849 \]
\[v = 5.44 \text{ m s}^{-1} \]
| B1 | FT on their R, but not R =0.2g
| B1 | Use of conservation of energy
| FT | A1
| A1 | A1
| A1 | A1
| Or | \[F + 0.2g \sin 30^\circ = \pm 0.2a \]
\[a = \pm 9.1 \]
\[v^2 = 11^2 + 2 \times a \times 5 \]
\[v = 5.44 \text{ m s}^{-1} \]
| M1 | Use of N2L, 3 terms
| A1 | Complete method to find v

| (ii) | \[t = 5 \cos 30^\circ / 5.44 \cos 30^\circ \]
\[t = 0.919 \text{ s} \]
\[u = 5.44 \sin 30^\circ = (2.72) \]
\[s = 2.72 \times 0.919 - 4.9 \times 0.919^2 \]
\[s = -1.6 \text{ (or better)} \]
| M1 | time to lateral position over C
| A1 | Ht dropped
| B1 | Ball does not hit the roof
| M1 | all 3 correct
| A1 | A1

| Or (i) | \[y = x \tan \theta - gx \sec^2 \theta / 2V^2 \]
\[5 \text{ V} = 5.44 \]
\[0 = 30^\circ \]
\[x = 5 \cos 30^\circ \]
\[y = 2.5 - 9.8 \times 25 \times \frac{3}{4} \times \frac{1}{3} / (2 \times 5.44^2) \]
\[y = -1.6 \text{ (or better)} \]
| B1 | all 3 correct
| M1 | Substitute values
| A1 | A1

| OR (ii) | \[u = 5.44 \sin 30^\circ = (2.72) \]
\[-2.5 = 5.44 \sin 30^\circ t - 4.9t^2 \]
\[t = 1.04 \]
\[x = 5.44 \cos 30^\circ \times 1.04 = 4.9 \text{ (or better)} \]
| B1 | time to position level with AC
| M1 | Horizontal distance from B to C = 5 \cos 30^\circ = 4.3 \text{ (or better)}
| A1 | Ball does not hit the roof
| A1 | A1

| OR (ii) | \[y = x \tan \theta - gx \sec^2 \theta / 2V^2 \]
\[-2.5 = 0.577x - 0.221x^2 \]
| B1 | Substitute values
| M1 | Attempt to solve quadratic for x
| A1 | x = 4.9 \text{ (or better)}
| A1 | Horizontal distance from B to C = 5 \cos 30^\circ = 4.3 \text{ (or better)}
| B1 | Ball does not hit the roof
| A1 | A1

| OR (ii) | \[u = 5.44 \sin 30^\circ = 2.72 \]
\[-2.5 = 5.44 \sin 30^\circ t - 4.9t^2 \]
| B1 | Substitute values
| M1 | Attempt to solve quadratic for x
| A1 | x = 4.9 \text{ (or better)}
| A1 | Horizontal distance from B to C = 5 \cos 30^\circ = 4.3 \text{ (or better)}
| B1 | Ball does not hit the roof
| A1 | A1

| Aef | Time to position level with AC
| Time to lateral position over C

| Ball does not hit the roof

<p>| 13 | 7 |</p>
<table>
<thead>
<tr>
<th>OR (ii)</th>
<th>Attempt at equation of trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 0.577x - 0.221x^2$</td>
<td></td>
</tr>
<tr>
<td>$y = -0.577x$</td>
<td></td>
</tr>
<tr>
<td>Solving their quadratic and linear equations to get at least x or y</td>
<td></td>
</tr>
<tr>
<td>$x = 5.2$ (or better) or $y = -3.0$ (or better)</td>
<td></td>
</tr>
<tr>
<td>Horizontal distance from B to C = $5 \cos 30 = 4.3$ (or better)</td>
<td></td>
</tr>
<tr>
<td>Or Ht drop to $C = 5 \sin 30^\circ = 2.5$</td>
<td></td>
</tr>
<tr>
<td>Ball does not hit the roof</td>
<td></td>
</tr>
<tr>
<td>$M1$</td>
<td>$A1$</td>
</tr>
</tbody>
</table>

Equation of BC

Must be the one needed for comparison

<table>
<thead>
<tr>
<th>OR (ii)</th>
<th>Attempt at equation of trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 0.577x - 0.221x^2$</td>
<td></td>
</tr>
<tr>
<td>$y = -0.577x$</td>
<td></td>
</tr>
<tr>
<td>Solving their quadratic and linear equations</td>
<td></td>
</tr>
<tr>
<td>$x = 5.2$ (or better) and $y = -3.0$ (or better)</td>
<td></td>
</tr>
<tr>
<td>Distance = 6.0 (or better)</td>
<td></td>
</tr>
<tr>
<td>Ball does not hit the roof</td>
<td></td>
</tr>
<tr>
<td>$M1$</td>
<td>$A1$</td>
</tr>
</tbody>
</table>

Distance from B to point of intersection