Mark Scheme for June 2010
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
Question 1

Part i

\[t = \frac{5}{1.2} \]

\[t = 4.17 \text{ s} \]

M1

A1

\(4 \frac{1}{6} \text{ s}, 4.166 \text{ or better, 4.16 recurring.} \)

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Part ii

\[s = (-5)^2 \times 1.2 \]

\[s = 10.4 \text{ m} \]

\(OR (using \text{(ii)}) \)

\[s = 5 \times 4.17 - 1.2 \times 4.17^2 \]

\[s = 10.4 \text{ m} \]

\(OR (using \text{(ii)}) \)

\[s = (5 \times (0))/2 \times 4.17 \]

\[s = 10.4 \text{ m} \]

M1

A1

\(s = 5 = 1.2t \text{ or } 0 = 5 - 1.2t \)

\(5 \times 4.17 \text{ or } 0 = 5 - 1.2 \times 4.17 \)

Time must be > 0. Accept \(|t| \) from (i)

Award if \(|-4.17| \) used.

\(M1 \)

A1

\(s = 10.4 \text{ m} \)

\(OR (using \text{(i)}) \)

\(s = (5 + 0)/2 \times 4.17 \)

\(s = 10.4 \text{ m} \)

\(M1 \)

A1

\(M1 \)

A1

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Part iii

\[\text{Fr} = 3 \times 1.2 \]

\[R = 3 \times 9.8 \]

\(\mu = (3x)1.2/(3x)9.8 \)

\(\mu = 0.122 \)

\(OR \)

\(R = 3 \times 9.8 \)

Mass \times acceleration = +/- 3 \times 1.2

\(+/- \mu \times 29.4 = +/- 3 \times 1.2 \)

\(\mu = 0.122 \)

M1

A1

Accept 3 \times 0.6, +/-

Accept 3g, +/-

B1

B1

M1

A1

M1

A1

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Question 2

Part i

\(+/- (0.4x3 - 0.6x1.5) \)

\(+/- (0.4x0.1 - 0.6v) \)

\(0.4x3 - 0.6x1.5 = +/- (0.4x0.1 + 0.6v) \)

speed \(|v| = 0.433 \text{ ms}^{-1} \)

\(OR \)

\(+/- (0.4x3 - 0.4x0.1) = +/- 1.16 \)

\(0.6v + 0.6x1.5 = 0.6v + 0.9 \)

\(1.16 = +/- (0.6v + 0.9) \)

speed \(|v| = 0.433 \text{ ms}^{-1} \)

B1

B1

M1

A1

Accept 13/30 or 0.43 recurring, but not 0.43

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Part ii

\(+/- (0.4x0.1 - 0.6v) \)

\(0.4x3 - 0.6x1.5 = +/- (0.6v - 0.4x0.1) \)

\(v = 0.567 \)

\(\text{PQ} = 0.1x3 + 0.567x3 \)

\(\text{PQ} = 2 \text{ m} \)

\(OR \)

\(+/- 0.4x3 + 0.4x0.1 \text{ and } +/- 0.6v + 0.6x1.5 \)

\(1.24 = +/- 0.6v + 0.9 \)

\(v = 0.567 \)

etc

B1

M1

A1

Accept 2.00(1), 2.0, 2.00

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Question 3

Part i

\(H = +/- (9 - 5 \cos 60) \)

\(H = 6.5 \text{ N} \)

AG

M1

A1

\(+/- (9 + 5 \cos 120) \)

\(+/- 9 \text{ or } -9 \)

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Part ii

\(V = +/- (12 - 5 \sin 60) \)

\(V = 7.67 \text{ N} \)

M1

A1

\(+/- (12 + 5 \cos 150) \)

Accept 7.666 or better, or 7.6 recurring

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Part iii

\(R^2 = 6.5^2 + 7.67^2 \)

\(R = 10.1 \text{ N} \)

\(\tan A = 6.5/7.67 \text{ or } 7.67/6.5 \)

\(A = 40(\cdot)3 \text{ or } 49.7 \)

Bearing = 320°

M1

A1

Uses Pythagoras on forces \(V(ii) \) and 6.5

\(10.053 \cdot \)

Uses trigonometry in relevant triangle

M1

A1

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

May be implied by final answer

As this is not a final answer, exact accuracy is not an issue

Or better
Question 4

<table>
<thead>
<tr>
<th>Part</th>
<th>Expression</th>
<th>Mark Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>$3.2 - 0.2t^2 = 0$</td>
<td>M1 A1 [2] Puts 0 for v and attempts to solve QE Accept dual solution $+/-4$</td>
</tr>
</tbody>
</table>
| ii | $a = -2x0.2t$
$a = -0.4x4$
$a = -1.6 \text{ ms}^2$ | M1* D*M1 A1 [3] Differentiates v Substitutes $+ve \ t(i)$ in derivative of v Negative only |
| iii | $s= 3.2t - 0.2t^3/3 \ (+c)$
$t = 0, s = 0 \ \text{so} \ c = 0$
$s(4) = 3.2x4 -0.2x4^3/3$
$s = 8.53 \text{ m}$ | M1* A1 B1 D*M1 A1 [5] Integrates v, not multiplication by t Or correct use of limits 0 and 4 Accept without/loss of c 8 8/15 Accept with/without c |

Question 5

<table>
<thead>
<tr>
<th>Part</th>
<th>Expression</th>
<th>Mark Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>$+/-3x20/2$</td>
<td>M1 A1 [2] Use area of scalene triangle(s). Not suvat. Accept -30</td>
</tr>
</tbody>
</table>
| ii | $(t+4)x3/2 = 30$ or $3t/2 = 30 - 4x3$
$t = 16$ or $t = 12$
$T = 76$ | M1 A1 A1 A1 [4] Equates scalene trapezium area to distance (i) $(T-60)+4)x3/2 =30$, award A2 |
| iii | $T(\text{accn}) = 3/0.4 \ (-7.5 \text{ s})$
$\text{decn} = 3/[76-60 - 7.5]$
$\text{decn} = (+/-) 2/3 \text{ ms}^2$
OR
$S(\text{accn}) = 3^2/(2x0.4) \ (= 11.25 \text{ m})$
$\text{decn} = 3^2 / [2x(30 - 3x4 - 11.25)]$
$\text{decn} = (+/-) 2/3 \text{ ms}^2$ | B1 M1 A1 A1 [3] Or $3 = \text{decn} \times [(76-60) - 4 - 7.5]$ $(+/-) 0.667$ or better - accept 0.6 recurring |

Question 6

<table>
<thead>
<tr>
<th>Part</th>
<th>Expression</th>
<th>Mark Scheme</th>
</tr>
</thead>
</table>
| i | $T - 0.85g \sin30 = 0.85a$
$0.55g - T = 0.55a$
$a = 1.225/1.4$
$a = 0.875$
$T = 4.91$ | B1 B1 M1 A1 A1 [5] Either equation correct Both eqns correct and consistent ‘a’ direction Solves 2 sim eqn 4.908 or better – has to be positive |
| b | $F = 2T\cos30$
$F = 8.5(02\ldots)$ | M1 A1ft [2] Or Pythagoras or cosine rule $\text{cv}(4.91)x\sqrt{3}$ |
| ii | $v^2 = 1.3^2 + 2x0.875x1.5 \ (=4.315)$
$a = +/\,-\sin30$
$0 = 4.315 -2x4.9s$
$(s = 0.44\ldots)$
$S = 1.94$ | M1 A1ft B1 M1 A1 A1 [6] Uses $v^2 = u^2 + 2a(1.5)$, u non-zero, a from (i) $v = 2.077(\ldots)(v^2 =1.69+3xcv(0.875))$ $a = +/-4.9$ Uses $0^2 = u^2+/-2as$, with a not g or (i), u not1.3 May be implied – need not be 3sf |
7

i
- $F_r = 4 + 5\sin 60$
- $R = 12 - 5\cos 60$
- $\mu = \frac{(4 + 5\sin 60)}{(12 - 5\cos 60)}$
- $\mu = 0.877$

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 4 + component 5 ($4 + 4.333(01)$)</td>
<td>May be implied</td>
</tr>
<tr>
<td>May be implied</td>
<td>+ve from correct work</td>
</tr>
<tr>
<td></td>
<td>Friction/Reaction, $F_r > 4$, $R < 12$, both positive</td>
</tr>
</tbody>
</table>

ii
- Upper block
 - $\mu = \frac{5\sin 60}{(9-5\cos 60)}$ ($= 4.3/6.5$)
 - $\mu = 0.666$

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Component 5)/(9-component 5)</td>
<td></td>
</tr>
</tbody>
</table>

iii
- Upper mass = $\frac{9}{g}$
 - $(\frac{9}{g})a = 5\sin 60 - 0.1(9 - 5\cos 60)$
 - $a = 4.01$
 - Lower mass
 - Tractive force = $4 + 0.1(9-5\cos 60)$ (= 4.65)
 - Max Friction = $0.877(3 +(9-5\cos 60)$ (= 8.33)
 - Tractive force $< \text{Max Friction}$
 - $a = 0$

<table>
<thead>
<tr>
<th>B1</th>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
</table>
| $0.918(36..)$ | $N2L$ $0.918(36..)a = 4.33(01..) - 0.1x6.5$ | where friction $= 0.1x(9\text{- component 5})$

OR for Lower Mass
- ma = $4+0.1(9-5\cos 60)-0.877(3+9-5\cos 60)$
- -ve a caused by friction impossible, hence $a = 0$

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2L with 3 force terms:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 4 + component 5 (4 + 4.333(01))</td>
<td>May be implied</td>
</tr>
<tr>
<td>May be implied</td>
<td>+ve from correct work</td>
</tr>
<tr>
<td>Friction/Reaction, $F_r > 4$, $R < 12$, both positive</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Component 5)/(9-component 5)</td>
<td></td>
</tr>
</tbody>
</table>