Mark Scheme for June 2010
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
1 (i)

\[\text{B1} \quad 1 \]

(ii) \[\frac{1}{3} \]

\[\text{M1} \quad \frac{1}{9^2} \text{ or } \frac{1}{\sqrt{9}} \text{ soi} \]

\[\text{A1} \quad \frac{2}{3} \]

2 (i)

\[\text{B1}^* \text{ Reasonably correct curve for } y = \frac{1}{x^2} \text{ in 3rd and 4th quadrants only} \]

\[\text{B1} \quad \frac{2}{\text{dep}^*} \text{ Very good curves in curve for } y = \frac{1}{x^2} \text{ in 3rd and 4th quadrants} \]

\[\text{SC If 0, very good single curve in either 3rd or 4th quadrant and nothing in other three quadrants. B1} \]

(ii)

\[\text{M1} \text{ Translation of their } y = -\frac{1}{x^2} \text{ vertically} \]

\[\text{A1} \quad 2 \text{ Reasonably correct curve, horizontal asymptote soi at } y = 3 \]

(iii) \[y = -\frac{2}{x^2} \]

\[\text{B1} \quad 1 \]

3 (i) \[\frac{12(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} \]

\[= \frac{12(3 - \sqrt{5})}{9 - 5} \]

\[= \frac{9 - 3\sqrt{5}}{A1} 3 \]

\[\text{M1} \quad \text{Multiply numerator and denom by } 3 - \sqrt{5} \]

\[= 3(\sqrt{5})(3 - \sqrt{5}) = 9 - 5 \]

(ii) \[3\sqrt{2} - \sqrt{2} \]

\[= 2\sqrt{2} \]

\[\text{M1} \quad \text{Attempt to express } \sqrt{18} \text{ as } k\sqrt{2} \]

\[\text{A1} \quad 2 \]

\[\text{[5]} \]
4 (i) \((x^2 - 4x + 4)(x + 1)\)
\[= x^3 - 3x^2 + 4\]
M1 Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an \(x^3\) term)
A1 Expansion with at most 1 incorrect term
A1 3 Correct, simplified answer

(ii)
[Graph of a cubic function with x-intercepts at (0, 4) and (2, 0), and a turning point at (2, 0).]
B1 +ve cubic with 2 or 3 roots
B1 Intercept of curve labelled (0, 4) or indicated on y-axis
B1 3 (-1, 0) and turning point at (2, 0) labelled or indicated on x-axis and no other x intercepts

5 \[k = x^2\]
\[4k^2 + 3k - 1 = 0\]
\[(4k - 1)(k + 1) = 0\]
\[k = \frac{1}{4}\] (or \(k = -1\))
\[x = \pm \frac{1}{2}\]
M1* Use a substitution to obtain a quadratic or factorise into 2 brackets each containing \(x^2\)
M1 dep Correct method to solve a quadratic
A1 Attempt to square root to obtain \(x\)
A1 \(\frac{1}{2}\) and no other values
5

6 \[y = 2x + 6x^{\frac{3}{2}}\]
\[\frac{dy}{dx} = 2 - 3x^{\frac{1}{2}}\]
M1 Attempt to differentiate
A1 \[kx^{\frac{3}{2}}\]
A1 Completely correct expression (no +c)

When \(x = 4\), gradient = \[2 - \frac{3}{\sqrt{4^3}}\] = \[\frac{13}{8}\]
M1 Correct evaluation of either \(4^{\frac{3}{2}}\) or \(4^{\frac{1}{2}}\)
A1 5

7 \[2(6 - 2y)^2 + y^2 = 57\]
\[2(36 - 24y + 4y^2) + y^2 = 57\]
\[9y^2 - 48y + 15 = 0\]
\[3y^2 - 16y + 5 = 0\]
\[(3y - 1)(y - 5) = 0\]
\[y = \frac{1}{3}\] or \(y = 5\)
\[x = \frac{16}{3}\] or \(x = -4\)
M1* substitute for \(x/y\) or attempt to get an equation in 1 variable only
A1 correct unsimplified expression
A1 obtain correct 3 term quadratic
M1 dep correct method to solve 3 term quadratic
A1 6 SC If A0 A0, one correct pair of values, spotted or from correct factorisation
B1
Question 8

Part (i)

\[2 \left(x^2 + \frac{5}{2} x \right) \]

\[= 2 \left[\left(x + \frac{5}{4} \right)^2 - \frac{25}{16} \right] \]

\[= 2 \left(x + \frac{5}{4} \right)^2 - \frac{25}{8} \]

- **B1**

Part (ii)

\[\left(-\frac{5}{4}, -\frac{25}{8} \right) \]

- **B1√** 2

Part (iii)

\[x = -\frac{5}{4} \]

- **B1** 1

Part (iv)

\[x(2x + 5) > 0 \]

- **M1**

\[x < -\frac{5}{2}, \ x > 0 \]

- **M1**

\[0, -\frac{5}{2} \] seen

Question 9

Part (i)

\[\frac{4 + p}{2} = -1, \quad \frac{5 + q}{2} = 3 \]

- **M1**

\[p = -6 \]

- **A1**

\[q = 1 \]

- **A1** 3

Part (ii)

\[r^2 = (4 - 1)^2 + (5 - 3)^2 \]

\[r = \sqrt{29} \]

- **M1**

\[r^2 \] uses \((x + 1)^2 + (y - 3)^2 \) seen

- **A1** 2

Part (iii)

\[(x + 1)^2 + (y - 3)^2 = 29 \]

\[x^2 + y^2 + 2x - 6y - 19 = 0 \]

- **M1**

\[(x + 1)^2 + (y - 3)^2 \] seen

- **M1**

\[(x \pm 1)^2 + (y \pm 3)^2 \] = their \(r^2 \)

- **A1** 3

Correct equation in correct form

Part (iv)

\[\text{gradient of radius } = \frac{3 - 5}{-1 - 4} \]

\[= \frac{2}{5} \]

\[\text{gradient of tangent } = -\frac{5}{2} \]

- **B1√**

\[y - 5 = -\frac{5}{2}(x - 4) \]

- **M1**

\[y = -\frac{5}{2}x + 15 \]

- **A1** 5

Correct equation of straight line through (4, 5), any non-zero gradient

\[\text{oe 3 term equation e.g. } 5x + 2y = 30 \]
10(i) \(\frac{dy}{dx} = 6x^2 + 10x - 4 \)
\[6x^2 + 10x - 4 = 0 \]
\[2(3x^2 + 5x - 2) = 0 \]
\[(3x-1)(x+2) = 0 \]
\[x = \frac{1}{3} \text{ or } x = -2 \]
\[y = -\frac{19}{27} \text{ or } y = 12 \]
- B1 1 term correct
- B1 Completely correct (no +c)
- M1* Sets their \(\frac{dy}{dx} = 0 \)
- M1* Correct method to solve quadratic

(ii) \(-2 < x < \frac{1}{3}\)
- M1 Any inequality (or inequalities) involving both their \(x \) values from part (i)
- A1 2 Allow \(\leq \) and \(\geq \)

(iii) When \(x = \frac{1}{2} \),
\[6x^2 + 10x - 4 = \frac{5}{2} \] and \(2x^3 + 5x^2 - 4x = -\frac{1}{2} \)
\[y + \frac{1}{2} = 5 \left(\frac{1}{2} \left(x - \frac{1}{2} \right) \right) \]
\[10x - 4y - 7 = 0 \]
- M1 Substitute \(x = \frac{1}{2} \) into their \(\frac{dy}{dx} \)
- B1 Correct \(y \) coordinate
- M1 Correct equation of straight line using their values. Must use their \(\frac{dy}{dx} \) value not e.g. the negative reciprocal
- A1 Shows rearrangement to given equation
- A1 4 CWO throughout for A1

(iv) Sketch of a cubic with a tangent which meets it at 2 points only

- B1 2 +ve cubic with max/min points and line with +ve gradient as tangent to the curve to the right of the min

SC1
- B1 Convincing algebra to show that the cubic
\[8x^3 + 20x^2 - 26x + 7 = 0 \] factorises into \((2x - 1)(2x - 1)(x + 7) \)
- B1 Correct argument to say there are 2 distinct roots

SC2
- B1 Recognising \(y = 2.5x - \frac{7}{4} \) is tangent from part (iii)
- B1 As second B1 on main scheme