Mark Scheme for June 2010
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
Question 1

\[v^2 = 2 \times 9.8 \times 10 \]
\[v = 14 \text{ m s}^{-1} \]

Method to find speed using their “v”

\[v^2 = u^2 + 2as \]
(\(u = 0 \))

Method to find angle using their “v”

\[15.7 \text{ or } 7 \sqrt{5} \text{ m s}^{-1} \]
\[\tan^{-1}(14/7) \text{ or } \tan^{-1}(7/14) \]

63.4° to the horizontal

Use of correct formula

3.82

Question 2

1. **Use of correct formula**

\[\frac{(6\sin \frac{\pi}{2})}{(\frac{\pi}{2})} \]

3.82

2. **Method to find centre of mass**

\[8d = 3(6-3.82) + 5x9.82 \]

or \[8x = \pm \{3(-3.82) + 5x3.82\} \]

\[d = 6.95 \text{ or } 6.96 \text{ or } x = \pm/0.955 \]

\[\tan \theta = 0.96/6 \]

\[\theta = 9^\circ \]

Question 3

1. **Driving force = resistance**

\[D = 128 \times 1000 = 1600 \]

\[k(80)^2 = 128 \times 1000 \]

\[k = \frac{1}{4} \]

\[R = 900 \text{ N} \]

FT on their k (R = 3600k)

2. **4 terms required**

\[D = 128 \times 1000 / 60 = 2133\frac{1}{3} \]

\[2000 \times 9.8 \times \sin 2^\circ \]

\[6400 \times 3-900-2000 \times 9.8 \times \sin 2^\circ = 2000a \]

\[a = 0.275 \text{ m s}^{-2} \]

Question 4

1. **Using moments; allow sin/cos mix**

\[4T\cos 20^\circ = 5 \times g \times 2.5 \]

\[T = 32.6 \text{ N} \]

Allow with omission of g

2. **allow sin/cos mix**

\[X = T\sin 20^\circ \]

\[X = 11.1 \text{ FT} \]

\[Y + T\cos 20^\circ = 5 \times g \]

or \[2.5Y = 1.5 \times T\cos 20\text{ or } 4Y = 1.5 \times 5g \]

\[Y = 18.4 \text{ FT} \]

\[R = \sqrt{(X^2 + Y^2)} \text{ or } \tan^{-1}(Y/X) \]

or \[\tan^{-1}(X/Y) \]

\[R = 21.5 \text{ N} \]

\[\theta = 58.8^\circ \text{ above the horizontal} \]

or 31.2° to left of vertical

10
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (i)</td>
<td>(T\cos45° + R\sin45° = mg)</td>
<td>*M1 A1</td>
<td>3 terms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T\sin45° - R\cos45° = m\ell\sin45°\omega^2)</td>
<td>*M1 A1</td>
<td>3 terms; (a = r \omega^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2T = \sqrt{2mg + m\ell\omega^2})</td>
<td>Dep*M1 A1</td>
<td>Method to eliminate (R)</td>
<td>AG www</td>
</tr>
<tr>
<td></td>
<td>(T = m/2(\sqrt{2g + \ell\omega^2}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (ii)</td>
<td>(R = 0)</td>
<td>B1</td>
<td>may be implied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2R = \sqrt{2mg - m\ell\omega^2})</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or (T\cos45° = mg)</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or (T = m\ell\omega^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solve to find (\omega)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\omega = 4.16 \text{ rad s}^{-1})</td>
<td>A1 4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6 (i)</td>
<td>(2mu = 2mv + 3mv)</td>
<td>M1 A1 A1</td>
<td>Conservation of momentum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(v = 2/5u)</td>
<td></td>
<td>Must be (v =)</td>
<td></td>
</tr>
<tr>
<td>6 (ii)</td>
<td>(e = (3v - v) / u)</td>
<td>M1 A1</td>
<td>Using restitution</td>
<td>AG</td>
</tr>
<tr>
<td></td>
<td>(e = 4/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (iii)</td>
<td>Initial K.E. = (9mv^2 / 2 = 18mu^2 / 25)</td>
<td>B1 FT B1 FT</td>
<td>FT on their (v) from (i)</td>
<td>FT on their (v) from (i)</td>
</tr>
<tr>
<td></td>
<td>Final K.E. = (9mv^2 / 8 = 9mu^2 / 50)</td>
<td>B1 FT M1 A1</td>
<td></td>
<td>AG</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{2}m(V)^2 = \text{Final K.E.})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V = 3\ u / 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (iv)</td>
<td>(4mu / 5 - 3mu / 5 = 2mx + my)</td>
<td>M1 A1 FT M1 FT</td>
<td>Conservation of momentum</td>
<td>FT on their (v) from (i); aef</td>
</tr>
<tr>
<td></td>
<td>(u / 5 = 2x + y)</td>
<td>A1 FT</td>
<td>Using restitution</td>
<td>FT on their (v) from (i); aef</td>
</tr>
<tr>
<td></td>
<td>(e = 4/5 = (v - x) / u)</td>
<td>M1 FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4u = 5y - 5x)</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solving 2 relevant equations</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x = -u/5) (y = 3u/5)</td>
<td>A1 A1</td>
<td></td>
<td>both</td>
</tr>
<tr>
<td></td>
<td>(y = 3u/5)</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>away from wall ((x)) + towards wall ((y))</td>
<td>A1 8</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
7 (i) \[R = 0.2 \times 9.8 \times \cos 30^\circ = 1.70 \]
\[F = 0.1 \times 9.8 \times \cos 30^\circ = 0.849 \]
\[\frac{1}{2} \times 0.2 \times 11^2 - \frac{1}{2} \times 0.2 \times 0.2 \times v^2 = 0.2 \times 9.8 \times 5 \sin 30^\circ + 5 \times 0.849 \]
\[v = 5.44 \text{ m s}^{-1} \]

FT on their R, but not R = 0.2g

Use of conservation of energy

Or

\[F + 0.2g \sin 30^\circ = \pm 0.2a \]
\[a = \pm 9.1 \]
\[v^2 = 11^2 + 2 \times a \times 5 \]
\[v = 5.44 \text{ m s}^{-1} \]

6 **AG**

(ii) \[t = 5 \cos 30^\circ / 5.44 \cos 30^\circ \]
\[t = 0.919 \text{ s} \]
\[u = 5.44 \sin 30^\circ = 2.72 \]
\[s = 2.72 \times 0.919 - 4.9 \times 0.919^2 \]
\[s = -1.6 \text{ (or better)} \]

Ht drop to \(C = 5 \sin 30^\circ = 2.5 \text{ m} \)

Ball does not hit the roof

time to lateral position over \(C \)

Or

\[y = x \tan \theta - gx^2 \sec^2 \theta / 2V^2 \]

all 3 correct

first substitute values

5 \[V = 5.44 \quad 0 = 30^\circ \quad x = 5 \cos 30^\circ \]

marks of (ii) \[y = 2.5 - 9.8x253/4x4/3 / (2 \times 5.44^2) \]
\[y = -1.6 \text{ (or better)} \]

OR (ii) \[u = 5.44 \sin 30^\circ = 2.72 \]
\[-2.5 = 5.44 \sin 30^\circ t - 4.9t^2 \]
\[t = 1.04 \]
\[x = 5.44 \cos 30^\circ \times 1.04 = 4.9 \text{ (or better)} \]

Horizontal distance from \(B \) to \(C \) = \[5 \cos 30^\circ = 4.3 \text{ (or better)} \]

Ball does not hit the roof

time to position level with \(AC \)

OR (ii) \[y = x \tan \theta - gx^2 \sec^2 \theta / 2V^2 \]

substitute values

\[-2.5 = 0.577x - 0.221x^2 \]

Attempt to solve quadratic for \(x \)
\[x = 4.9 \text{ (or better)} \]

Horizontal distance from \(B \) to \(C \) = \[5 \cos 30^\circ = 4.3 \text{ (or better)} \]

Ball does not hit the roof

aef

OR (ii) \[u = 5.44 \sin 30^\circ = 2.72 \]
\[-2.5 = 5.44 \sin 30^\circ t - 4.9t^2 \]
\[t = 1.0 \text{ (or better)} \]
\[T = 5 \cos 30^\circ / 5.44 \cos 30^\circ \]
\[T = 0.92 \text{ (or better)} \]

Ball does not hit the roof

aef

time to position level with \(AC \)

time to lateral position over \(C \)
<table>
<thead>
<tr>
<th>OR (ii)</th>
<th>Attempt at equation of trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y = 0.577x - 0.221x^2$</td>
</tr>
<tr>
<td></td>
<td>$y = -0.577x$</td>
</tr>
<tr>
<td></td>
<td>Solving their quadratic and linear</td>
</tr>
<tr>
<td></td>
<td>equations to get at least x or y</td>
</tr>
<tr>
<td></td>
<td>$x = 5.2$ (or better) or $y = -3.0$ (or better)</td>
</tr>
<tr>
<td></td>
<td>Horizontal distance from B to C =</td>
</tr>
<tr>
<td></td>
<td>$5\cos30 = 4.3$ (or better)</td>
</tr>
<tr>
<td></td>
<td>Or Ht drop to $C = 5\sin30^\circ = 2.5$</td>
</tr>
<tr>
<td></td>
<td>Ball does not hit the roof</td>
</tr>
</tbody>
</table>

Mark Scheme

- **M1**
- **A1**
- **B1**

Equation of BC

Must be the one needed for comparison

<table>
<thead>
<tr>
<th>OR (ii)</th>
<th>Attempt at equation of trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y = 0.577x - 0.221x^2$</td>
</tr>
<tr>
<td></td>
<td>$y = -0.577x$</td>
</tr>
<tr>
<td></td>
<td>Solving their quadratic and linear</td>
</tr>
<tr>
<td></td>
<td>equations</td>
</tr>
<tr>
<td></td>
<td>$x = 5.2$ (or better) and $y = -3.0$ (or better)</td>
</tr>
<tr>
<td></td>
<td>Distance = 6.0 (or better)</td>
</tr>
<tr>
<td></td>
<td>Ball does not hit the roof</td>
</tr>
</tbody>
</table>

Mark Scheme

- **M1**
- **A1**
- **B1**

Distance from B to point of intersection
OCR Customer Contact Centre

14 – 19 Qualifications (General)
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored