OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
1(i)
Total has Poisson distribution with mean
\[\lambda = 0.21 \times 5 + 0.24 \times 5 = 2.25 \]
\[P(\geq 2) = 1 - e^{-\lambda} (1+\lambda) = 0.657 \]
- **M1** With \(\times 5 \)
- **A1** \(\lambda \) or 1+\(\lambda \) in brackets (their \(\lambda \))
- **M1** Or interpolation from tables

(ii)
EITHER: Each length is a random sample
OR: Flaws occur independently on the reels
- **B1** In context
- **1** Accept randomly

2
\(H_0: \mu = (or \geq) 170, \ H_1: \mu < 170 \)
\(\bar{x} = 167.5 \)
\(s^2 = 5.9 \)
EITHER: (\(\alpha \)) \((167.5 - 170)/\sqrt{(5.9/6)} = -2.52(1) \)
- **B1** For both hypotheses; accept words
- **B1** SR 2-tail test: B0B1B1M1A1M1A0
- **B1** Max 5/7

OR: (\(\beta \)) \(170 - t\sqrt{(5.9/6)} = 168.0 \)
- **M1** Standardise 167.5; + or – for M; /6 seen
- **A1** Explicitly Allow 2.571

Compare 167.5 with CV and reject \(H_0 \)
- **M1** Finding critical value or region.
- **A1** With \(t \) = 2.015 or 2.571
- **M1** Explicitly. Allow correct use of \(|t| \)
- **A1** M0 if \(z \) used
- **SR:** B1 if no explicit comparison but conclusion “correct”

3(i)
\(H_0: \) There is no association between the area in which a shopper lives and the day they shop
\((H_1: \) All alternatives) \)
\(\chi^2 = (4.3-0.5)^2(27.3^{-1} + 37.7^{-1} + 14.7^{-1} + 20.3^{-1}) = 2.606 \)
- **B1** SR difference in proportions
- **B1** B1 define and evaluate \(p_1 \) and \(p_2 \) with \(H_0 \)
- **B1** B1 for \(p = 0.42 \)
- **M1** M1A1 for \(z = \pm 1.827 \) or 1.835(no pe)
- **A1** M1A0 Max 5/8

Compare with 2.706
- **M1 ft** At least one E value correct (M1)
- **A1** All correct(A1)
- **A1** At least one \(\chi^2 \), no or wrong cc, (M1FtE)
- **M1** All correct (A1); 2.606 or 2.61 (A1)
- **A1** Or use calculator (\(p = 0.106 \)) SR: B1
- **8** if no explicit comparison, as Q2
- **SR:** If \(H_0 \) association, lose 1st B1 and last M1A1

(ii)
Conclusion the same since critical value > 2.706
(and test statistic unchanged)
- **B1** OR from \(z = \pm 2.17 \), SR

| [9] |
4(i) \[s^2 = \frac{(1183.65-246.62/70)/69}{1.645} \]
\[(3.10, 3.94) \]
Use \[x \pm z \frac{s}{\sqrt{70}} \] or \[x \pm z \frac{s}{\sqrt{70}} / 69 \]
A1 A1 A1 A0 if interval not indicated
M1 M1 M1 M1
AEF Allow without ft or with \(s^2 \); with 70 Their \(s \)

(ii) \[4(0.9)^2(0.1) + 0.9^3 = 0.9477 \]
M1 A1 A1 5

(iii) \[4734 \text{ Mark Scheme June 2010} \]

5(i) \[e^{-2.25} - e^{-4} \times 150 = 13.1 \]
\[\text{Last: } 150 - \text{sum}=2.7 \]
M1 A1 A1 A1 ft 4

(ii) \(H_0: \text{Data fits the model, } H_1: \text{Data does not fit} \)
Combine last two cells
\[\chi^2 = \frac{7.8^2/33.2 + 11.6^2/61.6 + 7.4^2/39.4 + 11.2^2/15.8}{13.3(46)} \]
Compare with 9.348 (or 11.14), reject \(H_0 \)
In range 13.2 to 13.5
M1*Dep A1 A1 A1 *Dep + 6

(iii) Anxiety scores; have normal distributions; common variance; independent samples
\(H_0: \mu_E = \mu_C, \quad H_1: \mu_E < \mu_C \)
\[s^2 = \frac{(1923.56+1147.58)/29}{1.615} = -1.699 \]
\[t_{\text{crit}} = -1.699 \]
Compare -1.615 with -1.699 and do not reject \(H_0 \)
\(t \approx (32.16 - 38.21)/\sqrt{[105.9(18-1+13-1)]} \]
M1 A1 A1 A1 ft 10

(ii) Sample sizes are too small (to appeal to CLT)
B1 1

6(i) \[t = \frac{32.16 - 38.21}{\sqrt{105.9(18-1+13-1)}} \]
\[t = -1.615 \]
\[t_{\text{crit}} = -1.699 \]
Compare -1.615 with -1.699 and do not reject \(H_0 \)
There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes
M1 A1 A1 A1 ft

(ii) Sample sizes are too small (to appeal to CLT)
B1 1
7(i) Use $\sum F + \sum M \sim N(\mu, \sigma^2)$

$\mu = 1104.9$
$\sigma^2 = 6 \times 9.32 + 9 \times 8.52$
$= 1169.2$
$P(> 1150) = 1 - \Phi([1150 - 1104.9]/\sqrt{1169.2})$
$= 0.0937$

Sum of indep normal variables is normal

M1 A1 M1 A1

Standardise, correct tail. M0 $\sigma/\sqrt{15}$
Accept .094

(ii)

If unknown M, prob $\frac{1}{6}$, 6F and 9M as before.
If unknown W, prob $\frac{1}{7}$, 7W and 8M

Having $N(1093.3, 1183.4)$

$P(> 1150) = 1 - \Phi(1.648) = 0.0497$
$P = \frac{1}{2} \times 0.0936 + \frac{1}{2} \times 0.0497$
$= 0.07165$

Considering two cases

B1 B1 Mean and variance

A1

M1 Use of $\frac{1}{7}$

A1 ART 0.072

8(i)

$X = \frac{1}{2} S^2$

$F(s) = \int_{1}^{s} \frac{8}{3s^3} ds = \left[-\frac{4}{3s^2} \right]_{1}^{s}$

$= \frac{1}{s} (1 - 1/s^2)$

$G(x) = P(X \leq x) = P(S \leq 2\sqrt{x})$

$= F(2\sqrt{x})$

$= \frac{4}{3} - \frac{1}{3x}$

$g(x) = \begin{cases}
\frac{1}{3x^2}, & 0 \leq x \leq 1, \\
0, & \text{otherwise.}
\end{cases}$

B1 M1

Ignore range here

A1 M1 SR: B1 for $G(x) = F(2\sqrt{x})$ without justification and with correct result ft F

A1 ft

For $G'(a)$

B1 For range

(ii)

EITHER: $G(m) = \frac{1}{2}$

$\Rightarrow \frac{4}{3} - \frac{1}{3m} = \frac{1}{2}$

$\Rightarrow m = \frac{2}{3}$

M1 ft $G(x)$ in (i)

A1 ft CAO

A1

Allow wrong $\frac{1}{3}$

A1 Allow wrong $\frac{1}{3}$

A1 CAO

3 [10]
OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored