OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
(i) Using $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$,
\[1020 = 80 \times 15 + \frac{1}{2} \alpha \times 15^2 \]
$\alpha = -1.6$
Angular deceleration is 1.6 rad s^{-2}

(ii) Using $\theta = \omega_0 t - \frac{1}{2} \alpha t^2$,
\[\theta = 0 - \frac{1}{2} x (-1.6) \times 5^2 \]
\[\theta = 20 \text{ rad} \]
Angle is 20 rad

(iii) Using $\omega_2^2 = \omega_1^2 + 2\alpha \theta$,
\[0 = 80^2 + 2 \times (-1.6) \theta \]
\[\theta = 2000 \]
Number of revolutions is 318 (3 sf)

2	Area is $\int_0^{\ln 3} e^{-x} \, dx$	M1	Limits not required
	$= \left[-e^{-x} \right]_0^{\ln 3} \quad (= \frac{2}{3})$	A1	For $-e^{-x}$
	$\int x \, e^{-x} \, dx = \int_0^{\ln 3} x \, e^{-x} \, dx$	M1	Limits not required
	$= \left[-xe^{-x} - e^{-x} \right]_0^{\ln 3} \quad (= \frac{2}{3} - \frac{1}{3} \ln 3)$	M1	Integration by parts
	$x = \frac{3}{2} - \frac{1}{2} \ln 3 = 1 - \frac{1}{2} \ln 3$	A1	For $-xe^{-x} - e^{-x}$
	$\int \frac{1}{2} y^2 \, dx = \int_0^{\ln 3} \frac{1}{2} (e^{-x})^2 \, dx$	M1	Limits not required
	$= \left[-\frac{1}{4} e^{-2x} \right]_0^{\ln 3} \quad (= \frac{2}{9})$	A1	$\int (e^{-x})^2 \, dx$ or $\int (-\ln y) y \, dy + (\frac{1}{3} \ln 3) \times \frac{1}{5}$
	$\frac{y}{3} = \frac{9}{3} = \frac{1}{3}$	A1	$-\frac{1}{4} e^{-2x}$ or $-\frac{1}{2} y^2 \ln y + \frac{1}{4} y^2 \quad (\text{dep on M1})$
	Max penalty of 1 mark for correct answers in an unacceptable form (eg decimals)		

3 (i) By conservation of angular momentum
\[I_2 \times 15 = 0.9 \times 16 \]
\[I_2 = 0.96 \]
Mass is 0.375 kg

(ii) KE before is $\frac{1}{2} \times 0.9 \times 16^2$
KE after is $\frac{1}{2} \times 0.96 \times 15^2$
Loss of KE is $115.2 - 108 = 7.2 \text{ J}$
Question 4

Part (i)

\[
\cos \alpha = \frac{12}{15}
\]

\[
\alpha = 36.87^\circ \text{ (4 sf)}
\]

Bearing of \(v_B\) **is**

\[
110 - 36.87 = 073.13 = 073^\circ \text{ (nearest degree)}
\]

- **M1** Velocity triangle with 90° opposite \(v_C\)
- **A1** Correct velocity triangle
- **M1** Finding a relevant angle

Part (ii)

Magnitude is \(\sqrt{15^2 - 12^2} = 9 \text{ ms}^{-1}\)

Direction is 90° from \(v_B\)

Bearing is

\[
73.13 + 90 = 163^\circ \text{ (nearest degree)}
\]

B1 Accept 8.95 to 9.05

M1

A1

Alternative for (ii) (using given answer in (i))

\[
v^2 = 12^2 + 15^2 - 2 \times 12 \times 15 \cos 37^\circ
\]

\[
v = 9
\]

\[
\sin \beta = \frac{\sin 37^\circ}{v}
\]

\[
\beta = 53^\circ
\]

B1

M1 Finding a relevant angle

A1

Part (iii)

As viewed from \(B\)

\[
d = 3500 \sin 56.87^\circ
\]

Shortest distance is 2930 m (3 sf)

M1 Diagram indicating initial displacement and relative velocity *May be implied*

M1

A1

Alternative for (iii)

\[
d^2 = (3500 \sin 40^\circ + 2.6...t)^2
\]

\[
+ (3500 \cos 40^\circ - 8.6...t)^2
\]

Minimum when \(-34432 + 162t = 0\)

\[
t = 213
\]

M1

M1

M1 Differentiating or completing the square

A1

Accept 2910 to 2950

M1

A1

Accept 2910 to 2950
<table>
<thead>
<tr>
<th>5 (i)</th>
<th></th>
<th>5 (ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I = \int_{-a}^{a} \frac{m}{6a} x^2 , dx) or (\int_{-a}^{a} \rho x^2 , dx)</td>
<td>(\delta m = \frac{m \delta x}{6a}) or (\rho = \frac{m}{6a})</td>
<td>(\text{WD by couple is } \frac{6mga}{\pi} \times 3\pi \quad (= 18mga))</td>
</tr>
<tr>
<td>[\int_{-a}^{a}] (\frac{m}{18a} x^3 , dx = \frac{m}{18a} (125a^3 + a^3)) or (42 \rho a^3)</td>
<td>Correct integral expression for (I)</td>
<td>(\text{Gain of PE is } mg(4a))</td>
</tr>
<tr>
<td>[= \frac{126ma^3}{18a} = 7ma^2]</td>
<td>(I = \int_{0}^{5a} ... + \int_{0}^{a} ...)</td>
<td>(18mga = 4mga + \frac{1}{2}(7ma^2) \omega^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angular speed is (\sqrt{\frac{4g}{a}})</td>
</tr>
<tr>
<td></td>
<td>(\text{Evaluating definite integral})</td>
<td>(\text{Equation involving WD, PE and } \frac{1}{2} I \omega^2)</td>
</tr>
<tr>
<td></td>
<td>(\text{Dependent on integrating } x^2)</td>
<td>Using (C\theta)</td>
</tr>
</tbody>
</table>
\[
\frac{dV}{d\theta} = mga(3\cos \theta + 4\sin \theta - 3)
\]

When \(\theta = 0 \), \(\frac{dV}{d\theta} = mga(3 + 0 - 3) = 0 \)

so \(\theta = 0 \) is a position of equilibrium

\[
\frac{d^2V}{d\theta^2} = mga(-3\sin \theta + 4\cos \theta)
\]

When \(\theta = 0 \), \(\frac{d^2V}{d\theta^2} = 4mga > 0 \)

hence the equilibrium is stable

\[\text{B1} \quad \text{M1} \quad \text{A1} \quad \text{ag} \]

Considering \(\frac{dV}{d\theta} = 0 \)

Correctly shown

\[\text{Considering } \frac{d^2V}{d\theta^2} \text{ (or other method)}\]

\[V^* = 4mga \implies \text{Stable M1A0}\]

\[V^* = 4mga \implies \text{Minimum } \implies \text{Stable M1A1}\]

(ii) Speed of \(P \) and \(Q \) is \(a\dot{\theta} \)

KE is \(\frac{1}{2}(5m)(a\dot{\theta})^2 + \frac{1}{2}(3m)(a\dot{\theta})^2 \) or

\[\frac{1}{2}(8m)(a\dot{\theta})^2 = \frac{5}{2}ma^2\dot{\theta}^2 + \frac{3}{2}ma^2\dot{\theta}^2 = 4ma^2\dot{\theta}^2\]

\[\text{M1} \quad \text{ag} \quad [5]\]

Or moment of inertia of \(P \) is \(5ma^2 \)

\[\frac{5}{2}ma^2\dot{\theta}^2 + \frac{3}{2}ma^2\dot{\theta}^2 \quad \text{M1A1}\]

\[\frac{1}{2}(5ma^2)\dot{\theta}^2 + \frac{1}{2}(3ma^2)\dot{\theta}^2 \quad \text{M1A0}\]

\[\frac{1}{2}(8ma^2)\dot{\theta}^2 \quad \text{M1A0}\]

(iii) \[V + 4ma^2\dot{\theta}^2 = K\]

\[\frac{dV}{d\theta} + 8ma^2\dot{\theta}^2 = 0\]

\[mga(3\cos \theta + 4\sin \theta - 3)\dot{\theta} + 8ma^2\dot{\theta}^2 = 0\]

For small \(\theta \), \(\sin \theta \approx \theta \), \(\cos \theta \approx 1 \)

\[mga(3 + 4\theta - 3) + 8ma^2\dot{\theta} = 0\]

\[\dot{\theta} = -\frac{g}{2a}\theta\]

Approximate period is \[2\pi \sqrt{\frac{2a}{g}}\]

\[\text{M1} \quad \text{A1} \quad \text{M1} \quad \text{A1} \quad \text{ft} \quad \text{A1} \quad [5]\]

\[= 0 \text{ is required for A1 (may be implied by later work)}\]

Linear approximation (ft is dep on M1M1)
\[
I = \frac{1}{2} m((3a)^2 + (4a)^2) + m(5a)^2 \\
= \frac{100ma^2}{3}
\]

Using parallel (or perpendicular) axes rule
or \(I = \frac{4}{7} m(3a)^2 + \frac{4}{7} m(4a)^2 \)

(ii)

By conservation of energy,
\[
\frac{1}{2} \left(\frac{100}{3} ma^2 \right) \omega^2 = mg(4a - 3a)
\]
\[
\frac{50}{3} ma^2 \omega^2 = mga
\]
Angular speed is \(\sqrt{\frac{3g}{50a}} \)
\[
-mg(3a) = \left(\frac{100}{3} ma^2 \right) \alpha
\]
Angular acceleration is \((-) \frac{9g}{100a} \)

(iii)

\[
P = mg \cos \theta = m(5a)\omega^2
\]
\[
P = \frac{1}{10} mg
\]
\[
Q = mg \sin \theta = m(5a)\alpha
\]
\[
Q = \frac{3}{20} mg
\]
\[
F = \sqrt{P^2 + Q^2} = \frac{1}{20} mg\sqrt{22^2 + 3^2}
\]
\[
= \frac{\sqrt{493}}{20} mg
\]

Alternative for (iii)

\[
H = m(5a)\omega^2 \sin \theta - m(5a)\alpha \cos \theta
\]
\[
V = m(5a)\left(\frac{3g}{50a} \right) \left(\frac{2}{3} \right) + m(5a)\left(\frac{9g}{100a} \right) \left(\frac{4}{5} \right)
\]
\[
H = \frac{27}{2} \frac{mg}{2} , \quad V = \frac{97}{100} mg
\]

Equation involving KE and PE

Equation involving \(P \) and \(r\omega^2 \)

Give A1 if correct apart from sign(s)
(Allow \(\frac{1}{2} H + \frac{1}{2} V \) in place of \(P \))

Equation involving \(Q \) and \(r\alpha \)

Give A1 if correct apart from sign(s)
ft for wrong value of \(\alpha \)
ft for wrong value of \(r \) in second equation
(Allow \(\frac{1}{3} H - \frac{1}{3} V \) in place of \(Q \))

Dependent on previous M1M1

Equation involving \(H, r\omega^2 \) and \(r\alpha \)

Give A1 if correct apart from sign(s)

Equation involving \(V, r\omega^2 \) and \(r\alpha \)

Give A1 if correct apart from sign(s)
\[F = \sqrt{H^2 + V^2} = \frac{1}{100} \, mg \sqrt{54^2 + 97^2} \]
\[= \frac{\sqrt{12325}}{100} \, mg = \frac{\sqrt{493}}{20} \, mg \]

- M1
- A1
- ag

| Dependent on previous M1M1 |