Mark Scheme for June 2010
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
1

Establish result true for $n = 1$ or $n = 2$

Add next term to given sum formula

Attempt to factorise or expand and simplify to correct expression

Correct expression obtained

Specific statement of induction conclusion

2

(i) (-7)

Obtain a single value

Obtain correct answer as a matrix

(ii) $BA = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$

Obtain a 2×2 matrix

All elements correct

$4C$ seen or implied by correct answer

Obtain correct answer, ft for a slip in BA

3

Either

$\frac{2}{3} n(n+1)(2n+1) - 2n(n+1) + n$

$\frac{1}{3} n(2n-1)(2n+1)$

Or

$\sum_{i=1}^{2n} r^2 - 4 \sum_{i=1}^{n} r^2$

$\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6} n(n+1)(2n+1)$

$\frac{1}{3} n(2n-1)(2n+1)$

Express as a sum of 3 terms

Use standard sum results

Correct unsimplified answer

Attempt to factorise

Obtain at least factor of n and a quadratic

Obtain correct answer a.e.f.

Express as difference of 2 $\sum r^2$ series

Use standard result

Correct unsimplified answer

Attempt to factorise

Obtain at least factor of n

Obtain correct answer
4 (i) \(5 + 12i \)
\[
\begin{align*}
\text{Correct real and imaginary parts} \\
\text{Correct modulus} \\
\text{Correct argument}
\end{align*}
\]

(ii)
\[
\frac{-11}{85} + \frac{27}{85}i
\]

Obtain correct numerator
Obtain correct denominator

5 (a)
\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

Each column correct
SC B2 use correct matrix from MF1
Can be trig form

(b) (i)

(ii)

Stretch, in \(x \)-direction sf 5
Rotation, 60° clockwise

6 (i) (a)

(b)

Circle centre (3, –4), through origin
Vertical line, clearly \(x = 3 \)

(ii)

Inside their circle
And to right of their line, if vertical
7

Either

\[\alpha + \beta = -2k \quad \alpha \beta = k \]

\[y^2 - 4ky + 4k = 0 \]

Or

\[\alpha + \beta = -2k \]

\[y = \frac{-2k}{x} \]

\[y^2 - 4ky + 4k = 0 \]

B1B1 State or use correct results
M1 Attempt to find sum of new roots
A1 Obtain 4k
M1 Attempt to find product of new roots
A1 Obtain 4k
B1ft Correct quadratic equation a.e.f.

\[\frac{-k \pm \sqrt{k^2 - k}}{2k} \]

\[\frac{\alpha + \beta}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \quad \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}} \]

\[y^2 - 4ky + 4k = 0 \]

B1 Find roots of original equation
B1 Express both new roots in terms of k

M1 Attempt to find sum of new roots
A1 Obtain 4k
M1 Attempt to find product of new roots
A1 Obtain 4k
B1ft Correct quadratic equation a.e.f.
8

(i) M1 Attempt to rationalise denominator or cross multiply
A1 2 Obtain given answer correctly

(ii) M1 Express terms as differences using (i)
M1 Attempt this for at least 1st three terms
A1 1st three terms all correct
A1 Last two terms all correct
M1 Show pairs cancelling
A1 6 Obtain correct answer, in terms of n

\[\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1) \]

(iii) B1 1 Sensible statement for divergence

9

(i) M1 Show correct expansion process for 3 x 3
M1 Correct evaluation of any 2 x 2
A1 3 Obtain correct answer

\[\det A = a^2 - a \]

(ii) (a) M1 Find a pair of inconsistent equations
A1 State inconsistent or no solutions

(b) M1 Find a repeated equation
A1 State non unique solutions

(c) B1 State that det A is non-zero or find correct solution
B1 6 State unique solution

SC if detA incorrect, can score 2 marks for correct deduction of a unique solution, but only once

10

(i) M1 Attempt to equate real and imaginary parts
A1 Obtain both results
M1 Eliminate to obtain quadratic in \(x^2 \) or \(y^2 \)
M1 Solve to obtain \(x \) or \(y \) value
A1 5 Obtain correct answer as a complex no.

\[x^2 - y^2 = 3 \quad xy = 2 \]

\[z = 2 + i \]

(ii) B1 1 Obtain given answer correctly

(iii) M1 Attempt to solve quadratic equation
A1 Obtain correct answers
M1 Choose negative sign
M1 Relate required value to conjugate of (i)
A1 5 Obtain correct answer

\[w^3 = 2 \pm 11i \]

\[w = 2 - i \]