OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners’ meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
1 (i) \[\frac{1}{3} \] \hspace{1cm} B1 1

(ii) \[\frac{1}{9^\frac{1}{2}} \text{ or } \frac{1}{\sqrt{9}} \text{ soi} \] \hspace{1cm} A1 2 \[\frac{2}{3} \]

2 (i) Reasonably correct curve for \(y = -\frac{1}{x^2} \) in 3rd and 4th quadrants only

B1* \[\text{dep*} \] 2 Very good curves in curve for \(y = -\frac{1}{x^2} \) in 3rd and 4th quadrants

SC If 0, very good single curve in either 3rd or 4th quadrant and nothing in other three quadrants. B1

(ii) Translation of their \(y = -\frac{1}{x^2} \) vertically

A1 2 Reasonably correct curve, horizontal asymptote soi at \(y = 3 \)

(iii) \(y = -\frac{2}{x^2} \) \hspace{1cm} B1 1

\[\frac{12(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} = \frac{12(3 - \sqrt{5})}{9 - 5} = 9 - 3\sqrt{5} \]

\[\text{M1} \] \hspace{1cm} \[\text{A1} \] 3

\[3\sqrt{2} - \sqrt{2} = 2\sqrt{2} \] \hspace{1cm} M1 Attempt to express \(\sqrt{18} \) as \(k\sqrt{2} \)

\[\text{A1} \] 2 \[\frac{5}{5} \]
4 (i) \((x^2 - 4x + 4)(x + 1)\)
\[= x^3 - 3x^2 + 4\]
M1 Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an \(x^3\) term)
A1 Expansion with at most 1 incorrect term
A1 3 Correct, simplified answer

(ii)
\[k = x^2\]
\[4k^2 + 3k - 1 = 0\]
\[(4k - 1)(k + 1) = 0\]
\[k = \frac{1}{4}\] (or \(k = -1\))
\[x = \pm \frac{1}{2}\]
M1 Use a substitution to obtain a quadratic or factorise into 2 brackets each containing \(x^2\)
Correct method to solve a quadratic
A1 Attempt to square root to obtain \(x\)
\[\pm \frac{1}{2}\] and no other values
5
\[y = 2x + 6x^{\frac{1}{2}}\]
\[\frac{dy}{dx} = 2 - 3x^{\frac{3}{2}}\]
When \(x = 4\), gradient \[= 2 - \frac{3}{\sqrt{4^3}}\] \[= \frac{13}{8}\]
M1 Correct evaluation of either \(2 - \frac{3}{4^2}\) or \(2 - 3\) \[\frac{1}{2}\]
A1 5

7
\[2(6 - 2y)^2 + y^2 = 57\]
\[2(36 - 24y + 4y^2) + y^2 = 57\]
\[9y^2 - 48y + 15 = 0\]
\[3y^2 - 16y + 5 = 0\]
\[(3y - 1)(y - 5) = 0\]
\[y = \frac{1}{3}\] or \(y = 5\)
\[x = \frac{16}{3}\] or \(x = -4\)
M1 substitute for \(x/y\) or attempt to get an equation in 1 variable only
Correct unsimplified expression
A1 obtain correct 3 term quadratic
M1 correct method to solve 3 term quadratic
A1 6 SC If \(A0\) \(A0\), one correct pair of values, spotted or from correct factorisation **www** **B1**
8 (i) \[2(x^2 + \frac{5}{2}x) = 2\left[\left(x + \frac{5}{4} \right)^2 - \frac{25}{16} \right] = 2\left(x + \frac{5}{4} \right)^2 - \frac{25}{8} \]

\[
= 2\left(x + \frac{5}{4} \right)^2 - \frac{25}{8}
\]

\[
q = -2p^2
\]

\[
A1 \quad q = -\frac{25}{8} \text{ c.w.o.}
\]

(ii) \[
\left(-\frac{5}{4}, -\frac{25}{8} \right)
\]

\[
\text{B1} \quad \text{B1}\sqrt{2}
\]

(iii) \[x = -\frac{5}{4} \]

\[
\text{B1} \quad 1
\]

(iv) \[x(2x + 5) > 0 \]

\[
0, \quad -\frac{5}{2}
\]

\[
\text{M1} \quad \text{Correct method to find roots}
\]

\[
\text{A1} \quad \text{0, } -\frac{5}{2} \text{ seen}
\]

\[x < -\frac{5}{2}, x > 0 \]

\[
\text{M1} \quad \text{Correct method to solve quadratic inequality.}
\]

\[
\text{A1} \quad 4 \text{ [10]}
\]

9 (i) \[
\frac{4 + p}{2} = -1, \quad \frac{5 + q}{2} = 3
\]

\[
p = -6
\]

\[
q = 1
\]

\[
\text{M1} \quad \text{Correct method (may be implied by one correct coordinate)}
\]

\[
\text{A1} \quad \text{Correct method to solve quadratic inequality.}
\]

\[
\text{A1} \quad 3
\]

(ii) \[
r^2 = (4 - 1)^2 + (5 - 3)^2
\]

\[
r = \sqrt{29}
\]

\[
\text{M1} \quad \text{Use of } \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \text{ for either radius or diameter}
\]

\[
\text{A1} \quad 2
\]

(iii) \[(x + 1)^2 + (y - 3)^2 = 29 \]

\[x^2 + y^2 + 2x - 6y - 19 = 0 \]

\[
\text{M1} \quad (x + 1)^2 + (y - 3)^2 \text{ seen}
\]

\[
(x \pm 1)^2 + (y \pm 3)^2 = \text{their } r^2
\]

\[
\text{A1} \quad 3 \text{ Correct equation in correct form}
\]

(iv) \[
\text{gradient of radius } = \frac{3 - 5}{-1 - 4} = \frac{2}{5}
\]

\[
\text{gradient of tangent } = -\frac{5}{2}
\]

\[
\text{B1}\sqrt{2} \quad \text{oe}
\]

\[
y - 5 = -\frac{5}{2}(x - 4)
\]

\[
y = -\frac{5}{2}x + 15
\]

\[
\text{M1} \quad \text{Correct equation of straight line through (4, 5), any non-zero gradient}
\]

\[
\text{A1} \quad 5 \text{ [3]}
\]

\[
\text{oe 3 term equation e.g. } 5x + 2y = 30
\]
10(i) \(\frac{dy}{dx} = 6x^2 + 10x - 4 \)
\[6x^2 + 10x - 4 = 0 \]
\[2(3x^2 + 5x - 2) = 0 \]
\[(3x-1)(x+2) = 0 \]
\[x = \frac{1}{3} \text{ or } x = -2 \]
\[y = -\frac{19}{27} \text{ or } y = 12 \]

B1 1 term correct
B1 Completely correct (no +c)
M1* Sets their \(\frac{dy}{dx} = 0 \)
M1 dep* Correct method to solve quadratic

A1 SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1

(ii) \(-2 < x < \frac{1}{3}\)

M1 Any inequality (or inequalities) involving both their \(x \) values from part (i)
A1 2 Allow \(\leq \) and \(\geq \)

(iii) When \(x = \frac{1}{2} \), \(6x^2 + 10x - 4 = \frac{5}{2} \)
\[2x^3 + 5x^2 - 4x = -\frac{1}{2} \]
\[y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right) \]
\[10x - 4y - 7 = 0 \]

M1 Substitute \(x = \frac{1}{2} \) into their \(\frac{dy}{dx} \)
B1 Correct \(y \) coordinate

M1 Correct equation of straight line using their values. Must use their \(\frac{dy}{dx} \) value not e.g. the negative reciprocal
A1 Shows rearrangement to given equation
CWO throughout for A1

(iv) B1 Sketch of a cubic with a tangent which meets it at 2 points only

B1 2 +ve cubic with max/min points and line with +ve gradient as tangent to the curve to the right of the min

SC1 B1 Convincing algebra to show that the cubic
\[8x^3 + 20x^2 - 26x + 7 = 0 \]
\[(2x-1)(2x-1)(x+7) \]
B1 Correct argument to say there are 2 distinct roots
SC2 B1 Recognising \(y = 2.5x -7/4 \) is tangent from part (iii)
B1 As second B1 on main scheme