

Examiners' Report June 2022

International GCSE Chemistry 4CH1 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit www.edexcel.com/resultsplus. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2022

Publications Code 4CH1_1C_2206_ER

All the material in this publication is copyright

© Pearson Education Ltd 2022

Introduction

Candidates generally performed well on paper 1C. Candidates had clearly read the Advance Notice and were well prepared for most questions. Some of the extended response questions were particularly well answered, most notably Q2(b)(iii), Q5(b) and Q8(b). Candidates found questions difficult where they needed to apply their knowledge, most notably Q3(b)(ii), Q3(c) and Q9(a)(iii). Most candidates performed well on calculations, most notably Q9(c), where they were able to calculate the formula of a hydrated ionic compound and Q9(b)(ii), where most candidates were able to perform a mole calculation. Ratios in equations were a problem for some candidates and this was often missed. Many candidates found questions relating to a practical context most difficult. Q4(c) proved challenging along with Q6(a)(iv) and Q7(c)(iii). In extended response questions, many candidates did not answer the question given and should be encouraged to draft their ideas first or tick parts of the question off when they appear in the answer.

Question 1 (a)

Question 1 was well answered by most candidates. Q1(d) caught some candidates out: Period 1 of the Periodic table contains hydrogen and helium only; many candidates did not realise this and gave an answer of 2 rather than 3.

Question 2 (a)

Question 2 was well answered. Most candidates knew the changes of state. The modifications to the method were well understood in Q2(b)(i) and most candidates knew to filter the mixture in Q2(b)(ii).

Question 2 (b)(iii)

Many candidates answered Q2(b)(iii) very well and presented a concise and clear method to produce pure dry crystals of sodium chloride.

(iii) Describe how the student can obtain pure dry crystals of salt from the salt solution.

The Student Chould Sixt Silter the Sand on gree solution with Silter paper in order to Seperate them. They chould then heat the solution until the ruter evapovates in order to obtain Salt Crystals without Crystals without Crystals Toping, the Crystals, the Student Should Sixt transform with water and evaporate it again.

Candidates need to ensure they are answering the question set. They have been asked to produce crystals of salt from salt solution. The comments about filtering at the start were therefore ignored as filtering would add nothing to the method.

Read the question twice. Highlight what is important before answering.

(iii) Describe how the student can obtain pure dry crystals of salt from the salt solution.

(4)From the sout solution, fitter to remove

A great answer that scores full marks.

Consider using bullet points or a numbered list to show a method clearly.

Question 3 (a)(i)

Candidates were familiar with fractional distillation and the uses of fractions in Q3(a). Most knew the conditions for cracking in Q3(b)(i). Candidates answered the rest of the question less well.

Question 3 (b)(i)

- (b) One of the compounds in fraction D is tridecane (C₁₃H₂₈) which can be cracked to form shorter-chain hydrocarbons.
 - (i) State the catalyst and temperature used in this cracking reaction.

(2)

catalyst

Silica

temperature

600-700°c 650-750°c

Avoid giving a range for answers. The specification quotes 600-700°C so the range given here doesn't score marks as 750°C is too high.

Question 3 (b)(ii)

Q3(b)(ii) was poorly answered with most candidates scoring 1 mark.

(ii) The equation shows an example of a catalytic cracking reaction.

$$C_{13}H_{28} \rightarrow C_8H_{18} + C_2H_4 + C_3H_6$$

Give two reasons why this reaction is important.

1 it breaks dan longer chain hydrocarpon into shorter chair hydrocarbon, which are more useful. 2 It separates the hydrocarbons so that each can be used for different things such as household arels or road surfacing

Candidates should think carefully about what the equation shows us. C₁₃H₂₈ is being heated to produce C₈H₁₈, a shorter alkane present in the gasoline fraction and two very short alkenes. This answer only scored 1 mark.

Link your answer to the equation. Shorter alkanes are more flammable than longer alkanes and are therefore more useful as fuels. Short alkenes such as C_2H_4 and C_3H_6 can be used to make polymers.

(2)

(ii)	The equation	shows an	example	of a	cataly	vtic	cracking	reaction.
\++/	THE ENGINEERICH	2110413 011	description of	O1 U	-MANNE	A race	Principle 188	1000000010111

$$C_{13}H_{28} \ \rightarrow \ C_8H_{18} \ + \ C_2H_4 \ + \ C_3H_6$$

Give two reasons why this reaction is important.

(2)

1 it breaks down long-chain a	ikanes to shorter-chain
alkanes used by oil companies	to make more petrol
2 it breaks produces alkenes	used to make
polymers (plastic).	·

This answer was clearly linked to the products in the equation and scored the candidate 2 marks.

Question 3 (c)

(c) Sulfur is an impurity in crude oil. Explain why this is a problem for the environment.

When crude oil is combusted, it reads with oxygen. It sulcur is an impurity in enude oil, it can react with oxygen to form sulçur dioxide. Sulçur dioxide causes acid rain which is dangerous for the environment because it acidições lakes which kills fish.

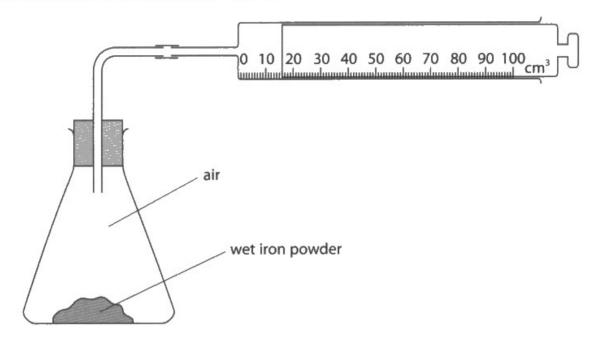
This answer scored 2 out of 3 marks. The candidate understood that sulfur reacts with oxygen forming sulfur dioxide but did not state that sulfur dioxide dissolves in or reacts with water forming acid rain.

(c) Sulfur is an impurity in crude oil. Explain why this is a problem for the environment.

As sulpur is auted, it reacts with the onggin in the form sulfur dioseide. Then as it goes in atmosphere, It reacts with the water vapour to form sulfuric acid this then becomes acid naw which can damage vegetation and animals.

An excellent answer linking formation of sulfur dioxide from sulfur and the formation of acid rain from sulfur dioxide.

(3)


(3)

Question 4 (a)(i)

Question 4(a) was well answered by most candidates who were familiar with the formation of rust and the conditions for rusting. Most candidates made the link between the increased surface area of iron in Q4(a)(iv) and an increased rate of reaction.

4 A student uses the reaction between iron and oxygen to find the percentage of oxygen in air.

The diagram shows the apparatus the student uses.

(a) (i) State why the iron powder needs to be wet.

to step it Soon reacting to onything other them the Or

Question 4 (b)

A number of candidates misread the volumes in Q4(b) or scored 1 mark for the volumes the wrong way around.

(b) The syringe in the diagram shows the reading at the end of the experiment.

Complete table 1 to show the readings on the syringe.

Give both values to the nearest 1 cm³.

(2)

syringe reading at start	8 Cm3
syringe reading at end	16cm3
change in volume in cm³	65

Table 1

(b) The syringe in the diagram shows the reading at the end of the experiment.

Complete table 1 to show the readings on the syringe.

Give both values to the nearest 1 cm³.

(2)

syringe reading at start	16
syringe reading at end	4981
change in volume in cm³	65

Table 1

Read the question carefully. The question states the volume at the start is shown in the diagram. These volumes are reversed.

Question 4 (c)

Very few candidates scored 3 marks here as few appreciated that there was air in the conical flask, gas tube and syringe making a total of 350cm³.

(c) The student repeats the experiment and obtains a different set of results.

Table 2 shows these results.

volume of air in conical flask and glass tube in cm ³	260
syringe reading at start	90
syringe reading at end	22

Table 2

Use the results from table 2 to calculate the percentage by volume of oxygen in the air.

$$\frac{1}{2}$$
 or or $\frac{90-22}{260} \times 100$

$$= \frac{90-22}{260} \times 100$$

$$= 26.15$$

$$= 26.27.$$

percentage by volume of oxygen in air = 262

Think where the air is coming from that is reacting. Also check your answer. This is a sample of air, so the expected answer is around 20%. This answer is too high as the candidate has only considered the air in the conical flask and glass tube.

(c) The student repeats the experiment and obtains a different set of results.

Table 2 shows these results.

volume of air in conical flask and glass tube in cm³	260
syringe reading at start	90
syringe reading at end	22

Table 2

Use the results from table 2 to calculate the percentage by volume of oxygen in the air.

$$266 + 90 = 350 cm^{3}$$

$$90 - 22 = 68 cm^{2}$$

$$\frac{68}{350} \times 100 = 19.4$$

This was a perfect answer.

Question 5 (a)(i)

Question 5 was well answered by most. Candidates knew the definition for isomers although there was some confusion with isotopes. The relative atomic mass in Q5(a)(ii) was well answered and most candidates knew the name of pentane in Q5(a)(iii).

Question 5 (a)(iv)

Many candidates did not score both marks here. Candidates need to appreciate that branches do not occur on the end carbon and that there are multiple ways of drawing methylbutane.

(iv) Draw the displayed formulae of the other two isomers.

(2)

These are both methylbutane so this only scores 1 mark.

(iv) Draw the displayed formulae of the other two isomers.

(2)

Isomer 2

Isomer 2 does not score as the candidate has drawn pentane.

Question 5 (b)

In Q5(b) many candidates did not take the time to plan their answer or ensure that they answered the question that was asked. A paragraph for ethane and one for ethene would help to ensure every point in the question was covered.

(b) Ethane (C₂H₀) and ethene (C₂H₄) both react with bromine.

Describe the differences in the reactions of ethane and ethene with bromine.

Refer to the conditions, the products and the types of reaction involved.

Elhane reach with bromine water and an addition reaction takes place. There is a colour change from orange to colourius. It produces GMy Br. - The double bond between the carbons the is brown. Ethane only yearth with bromine in the presence of UV light, a substitution reaction takes place which produces GMz Br + HBr

(5)

A concise answer that scored full marks. The comment about colour change was not asked for in the question so was ignored. There were enough correct points in the answer so the incorrect formula of dibromoethane could be ignored too.

(b) Ethane (C_2H_6) and ethene (C_2H_4) both react with bromine.	10
Describe the differences in the reactions of ethane and ethene with bromine.	
Refer to the conditions, the products and the types of reaction involved.	(5)
· ethane, bronnine water will stay brown.	>>>
: ethere, bronine water will go clear.	***************************************
when reacted with emane it will stay bramine.	***************************************
when reacted with others it will became brounds.	

Read the question carefully before starting. This candidate's answer scored 0 marks as the question did not ask for colour changes.

Question 6 (a)(i)

Many candidates understood rates of reaction and the collision theory in question 6. Many coped well with a challenging calculation in Q6(a)(iii) although some candidates missed the ratio in the equation. The graph was well drawn by most and the vast majority of candidates knew how increasing the temperature would change the graph. When answering rate of reaction questions, candidates need to appreciate that only changing the temperature changes the energy of the particles. Particles do not have more energy at the start of a reaction.

Question 6 (a)(iii)

(iii) The student uses 0.090 g of magnesium and 0.025 mol of hydrochloric acid.

Show by calculation that the hydrochloric acid is in excess.

$$mass = 0.0909$$
 rfm^2
 rfm^2

Don't forget to use the ratio in the equation in a question like this. If the candidate had shown 0.00375 moles of magnesium needs 0.00750 moles of hydrochloric acid, they would have scored both marks.

Question 6 (b)(iv)

(iv) Explain why the rate of reaction is greatest at the start of the reaction.

(2)

More reaction, more knotic energy, more frequent collision, more reactive at the

The energy of particles does not change during a reaction. At the beginning there **will** be more frequent collisions as the concentration of the acid is higher (or the surface area of the magnesium is greater).

(iv) Explain why the rate of reaction is greatest at the start of the reaction.

(2)

At the start of the reaction there is the greatest volume concentration of HCI molecules and Mg particles. This means the HCI and Mg are much closer together and thous there are more particles of hydrochloric acid and magnesian per unit volume which leads to more successful collisions per unit time. This the rate of reaction is fastest at the start. However over time, the concentrations will decome and thus the rate of reaction will slow.

A great answer that scores both marks.

Question 6 (c)(ii)

To score full marks in Q6(c)(ii) candidates needed to link increased energy to successful collisions.

(ii) Explain, in terms of particle collision theory, how increasing the temperature affects the rate of reaction.

(3)

- streets in true, success in lanetic energy

- more hintic every, high runky of collision in

per unit time

- more collision per unit time, sperte vale of realism

2 marks scored here as there is no link to successful collisions.

(ii) Explain, in terms of particle collision theory, how increasing the temperature affects the rate of reaction.

Increase on temperative increases the rate of reaction because the particles have more termal energy therefore more laster with & more

collisions and therefore more Successful Collisions

per unit time

This candidate scores full marks as they have correctly linked increasing temperature to more energy and therefore an increase in frequency of successful collisions.

Question 7 (a)(i)

The calculations in question 7 were well answered by most candidates although many did not give the A_r of copper to 3 significant figures as stated in the question. Few candidates gave a definition for isotopes that scored full marks.

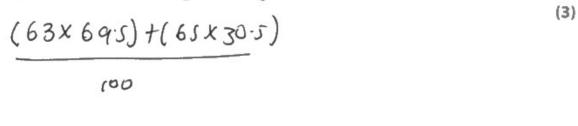
- This question is about copper and copper compounds.
 - (a) A sample of copper contains two isotopes.
 - Cu-63 with relative abundance 69.5%
 - Cu-65 with relative abundance 30.5%
 - (i) State what is meant by the term isotopes.

Atoms of the same element with a different number newtrons (but the same number of protons)

- This question is about copper and copper compounds.
 - (a) A sample of copper contains two isotopes.
 - Cu-63 with relative abundance 69.5%
 - Cu-65 with relative abundance 30.5%
 - (i) State what is meant by the term **isotopes**.

Same number of protons and electrons different number of neutrons

A definition for isotopes needs to contain a reference to atoms. These candidates only scored 1 mark. If they had said **atoms** with the same number of protons but different numbers of neutrons both marks would have been scored.


(2)

(2)

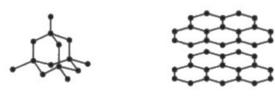
Question 7 (a)(ii)

(ii) Calculate the relative atomic mass (A_r) of this sample of copper.

Give your answer to three significant figures.

- 63.61

$$A_r$$
 of copper = 63.61



Read the question. This candidate clearly understands how to calculate an A_r value but has not given their answer to 3 significant figures.

Question 8 (a)

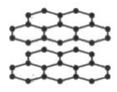
Many candidates showed a good understanding of the different properties of diamond and graphite. Some answers, however, referred to properties such as melting and boiling points which were ignored as this is not what the question was asking for. Candidates should take time to plan their answers and consider separate paragraphs for diamond and graphite. Candidates should also focus their answers on the properties in the question and should tick these off when included in the answer.

8 Diamond and graphite are giant covalent structures made of carbon atoms.
The diagram shows their structures.

Diamond

Graphite

(a) Discuss the differences between diamond and graphite.


Refer to structure and bonding, electrical conductivity and hardness in your answer.

Diamond is hard and does not conduct electricity. · Bransond Diamond is made of carpon atom atoms (4 bonds per atom). It has lattice shape. · liamond is hard because there are strong covalent bonds between all atoms (many), which require lots of furce for every to break. · Diamond does not conduct electricity because there are neither delivedized electrons nor free cons to carry charge charge traphite is copter than diamond and conducts electricity. · Graphite is made of tayors of conten atoms with 3 bonds per Graphite is soft because layers can slide over each other. There are weak forces between layers which require little energy to overiome. Graphite conducts electricity because there is one delocalised electron per carbon atom which is free to more and carry charge

8 Diamond and graphite are giant covalent structures made of carbon atoms. The diagram shows their structures.

Diamond

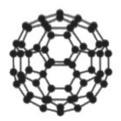
Graphite

(a) Discuss the differences between diamond and graphite.

Refer to structure and bonding, electrical conductivity and hardness in your answer.

Diamond is a giard lattice structure make
up of carbon. Each carbon atom is
covalently bonded to four corbon attoms,
this makes it incredibly hard, doesn't conduct
electricity, is insoluble and there are no
delocalises electrons.
Craphite is also a giant lattice structure
of carbon. Each carbon atom is bonded
to three carbon atoms, this means that
for every carbon atom there is one debaliso
election. This allows it to conduct electricity.
Conceplite is layers of covalent bonds which are
help together with weath internolecular parces, because
of this the layers can slike around morning graphit
malleable. It can easily be squished and is
used as a lubricant whilst diamonds are
used to cut through very tough surfaces.

(6)


These answers show a very good understanding of the properties of diamond and graphite. Candidates need to be careful about the use of 'intermolecular forces'. Layers of graphite are not molecules so 'intermolecular forces' is not correct here. However, 'weak forces between layers' is perfectly acceptable.

Question 8 (b)

Many candidates clearly understood why C₆₀ has a much lower melting point than diamond or graphite. To score full marks here, candidates need to clearly identify what force or bond is being broken and compare the energy required.

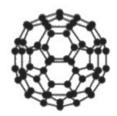
(b) C₆₀ fullerene is a simple molecular substance made of 60 carbon atoms.

The diagram shows its structure.

The table shows the approximate melting points of diamond, graphite and C₆₀ fullerene.

Substance	Approximate melting point in °C
diamond	4000
graphite	3600
C ₆₀ fullerene	600

Explain why C₀₀ fullerene has a much lower melting point than diamond and graphite.


(4) It is a simple moderator structure. Co fullerere has weak interpolation forces and so less energy is needed to break the lands. So it has a much lower melting point.

Candidates need to be careful to be precise with what is being broken. Although this answer mentions weak intermolecular forces it goes on to mention breaking bonds. This question therefore scores 0 marks.

(b) C_{60} fullerene is a simple molecular substance made of 60 carbon atoms.

The diagram shows its structure.

The table shows the approximate melting points of diamond, graphite and C_{60} fullerene.

Substance	Approximate melting point in °C				
diamond	4000				
graphite	3600 600				
C ₆₀ fullerene					

(4)

Explain why C_{60} fullerene has a much lower melting point than diamond and graphite.

fullerene has weak intermolecular forces
which don't require as much energy to
overcome them. Weak intermolecular forces doesn't
require high temperatures that give ope energy to
break them down. Diamond and graphite have
strong covalent bonds which require a lot
of energy to break them down, therefore need
higher temperatures are son needed.

A perfect answer that scored 4 marks.

Question 9 (a)(i)

Most candidates answered Q9(a) correctly, although some wrote the names of the states instead of the state symbols in Q9(a)(i).

Question 9 (a)(iii)

There were many poorly expressed answers in Q9(a)(iii). When explaining why a reaction is a redox reaction, candidates need to explain which **reactant** is oxidised and which is reduced. Many answers lacked precision.

(iii) Explain why the reaction of yellow lead oxide with hydrogen is a redox reaction.

(2)

The lead loses oxygen so is reduced to it's own element and the a hydrogen gains oxygen so to become water

Be clear what is oxidised and what is reduced. **Lead oxide** (not lead) is reduced as it loses oxygen and **hydrogen** is oxidised as it gains oxygen. This answer therefore scored 1 mark.

(iii) Explain why the reaction of yellow lead oxide with hydrogen is a redox reaction.

(gain of exygen) Because both axidation (loss of and reduction (loss of oxygen) are taking place at the same time. The hydrogen is being oxidised to from water (hydrogen is gaining oxygen) and the lead oxide is being reduced to form lead (lead oxide is losing oxygen)

This answer scores both marks as it is clear what is being oxidised and what is being reduced.

Question 9 (a)(iv)

In Q9(a)(iv) many candidates did not score both marks as they failed to describe a test. Pure water has a boiling point of 100°C scores 1 mark. Test the boiling point, if it's 100°C water is pure scores 2 marks.

Question 9 (b)(ii)

Many candidates scored full marks in Q9(b)(ii). The most common reason for losing marks was for incorrect application of the ratio in the equation.

(ii) The red lead oxide used in the reaction has a mass of 5.48 g.

Calculate the maximum mass of yellow lead oxide that could form.

 $[M_r \text{ of Pb}_3O_4 = 685 \qquad M_r \text{ of PbO} = 223]$

5.48/685=0.00\$ X223=1.784

maximum mass of PbO = 1.784

Don't forget the ratios in equations. This scores 2 marks as the candidate has not used the 2:6 ratio.

(ii) The red lead oxide used in the reaction has a mass of 5.48 g.

Calculate the maximum mass of yellow lead oxide that could form.

$$[M_r \text{ of Pb}_3O_4 = 685 \qquad M_r \text{ of PbO} = 223]$$

(3)

Mole of head lead oxide:

$$548 \div 685 = \frac{1}{125}$$
 mol

Mole of red lead oxide - Mole of yellow lead oxide

$$= 2:6 = 1:3$$

$$\therefore \text{ Mole of yellow lead oxide} = \frac{3}{125} \text{ mol}$$

: Mass (maximum) of Pb0 =
$$223 \times \frac{3}{125} = 5.3529$$

maximum mass of PbO = 5-352 g

Question 10 (a)

The dot and cross diagram for ammonia was very well answered by most candidates. In Q10(b) few candidates knew, or could work out, the formula for ammonium carbonate as $(NH_4)_2CO_3$

Throughout the question, there was confusion with the molecule ammonia and the ammonium ion.

Question 10 (b)(iii)

In Q10(b)(iii) the test for ammonium ions was poorly understood. Candidates need to make it clear that they need to add sodium hydroxide solution then test the **gas** produced with damp red litmus which turns blue.

(iii) Describe a test for ammonium ions.

(3)

You would get a damp piece of red limbs paper and place it in the ann solution that would contain ammonium ions. If commonium ions are present, men the damp red litmus paper will change colour from red to blue.

This candidate scored 0 marks. They didn't mention sodium hydroxide and they were clearly testing the solution with red litmus.

(iii) Describe a test for ammonium ions.

(3)

	· add	d sodium h	ydroxide solution	.			
	. 40	precipitate, b	ut pungent some	ell of armo	nia evolved	 	
		evolved	. 0		1		
***************************************	· QMM	onla turns d	amp pink litem	is paper blu	.	 	 441

This concise answer scored 3 marks.

Question 10 (c)(ii)

In Q10(c)(ii) many candidates did not answer the question. Many compared ammonia with ammonium nitrate.

Candidates are encouraged to plan their answer before starting, as few candidates spotted that ammonia being a gas could make it more problematic to apply to soil.

Paper Summary

Based on their performance on this paper, candidates should:

- read the question carefully before starting their answer.
- ensure their answer addresses the points in the question.
- plan answers to longer answer questions.
- make sure they use ratios in equations.
- consider using bullets or numbers to help write answers that require methods.
- learn chemical tests.

Grade boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link:

https://qualifications.pearson.com/en/support/support-topics/results-certification/gradeboundaries.html

