## Pearson

## Mark Scheme (Results)

## January 2017

Pearson Edexcel<br>International Advanced Subsidiary Level<br>In Core Mathematics C12 (WMA01)<br>Paper 01

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WMA01_01_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response


## PEARSON EDEXCEL IAL MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 125
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper or ag- answer given
- $\square$ or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

## General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \quad \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use the correct formula (with values for $a, b$ and $c$ ).
3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0, \quad$ leading to $x=\ldots$

## Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

## 2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

## Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

## Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 1(a) | $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{3 x^{2}}{3}-2 \times 2 x+3$ | M1: $x^{n} \rightarrow x^{n-1}$ or $5 \rightarrow 0$ | M1A1 |
|  |  | A1: Any 3 of the 4 terms differentiated correctly - this could be 2 terms correct and $5 \rightarrow 0$ (allow simplified or un-simplified for this mark, including $3 x^{0}$ for 3 ) |  |
|  | $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) x^{2}-4 x+3$ | Cao. All 3 terms correct and simplified and on the same line and no +0 . (Do not allow $1 x^{2}$ for $x^{2}$ or $x^{1}$ for $x$ or $3 x^{0}$ for 3). Condone poor notation e.g. omission of $\mathrm{d} y / \mathrm{d} x=$ ... or if they use $y=\ldots$ | A1 |
|  | Candidates who multiply by 3 before differentiating: $\text { e.g. }\left(\frac{x^{3}}{3}-2 x^{2}+3 x+5\right) \times 3=x^{3}-6 x^{2}+9 x+15 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-12 x+9$ <br> Scores M1A0A0 but could recover in (a) if they then divide by 3 <br> If they persist with $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-12 x+9$ in (b), allow full recovery in (b) |  |  |
|  |  |  | (3) |
| (b) | $x^{2}-4 x+3=0 \Rightarrow x=1,3 \quad$M1: Attempt to solve their 3TQ from <br> part (a) as far as $x=\ldots$ (see general <br> guidance for solving a 3TQ). If no <br> working is shown and the roots are <br> incorrect for their 3TQ, score M0 here <br> but the second method mark below is <br> still available. |  | M1A1 |
|  | $x<" 1 ", x>43 "$ | Chooses outside region ( $x$ < their lower limit $x>$ their upper limit). Do not award simply for diagram or table. | M1 |
|  | $x<1, \quad x>3$ <br> Correct answer. Allow the correct regions separated by a comma or written separately and allow other notation e.g. $(-\infty, 1) \cup(3, \infty)$. Do not allow $1>x>3$ or $x<1$ and $x>3$ (These score M1A0). ISW if possible e.g. $x>3, x<1$ followed by $1>x>3$ can score M1A1. $x>3, \quad x>1$ followed by $x>3$ (or) $x<1$ can score M1A1. Fully correct answer with no working scores both marks. Answers that are otherwise correct but use $\leq, \geq$ lose final mark as would $[-\infty, 1] \cup[3, \infty]$. |  | A1 |
|  |  |  | (4) |
|  |  |  | (7 marks) |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 2 (a) | Mark (a) and (b) together |  |  |
|  | $(x \pm 4) \ldots(y \pm 2)$ \left\lvert\, $\begin{aligned} & \text { Attem } \\ & \text { sight } \\ & \text { by a c }\end{aligned}\right.$ | complete the square on $x$ and $y$ or $\pm 4)$ and $(y \pm 2)$. May be implied of $( \pm 4, \pm 2)$. Or if considering $g x+2 f y+c=0$, centre is $( \pm g, \pm f)$. | M1 |
|  | Centre $C=(4,-2) \quad \begin{aligned} & \text { Corre } \\ & \text { But n }\end{aligned}$ | tre (allow $x=4, y=-2$ ) <br> $=. ., f=\ldots$ or $p=\ldots, q=\ldots$ etc. | A1 |
|  | Correct answer scores both marks |  |  |
|  |  |  | (2) |
| (b) | $r^{2}=12+( \pm 4)^{2}+( \pm 2)^{2}$ | Must reach: $\begin{gathered} r^{2}=12+\text { their }( \pm 4)^{2}+\text { their }( \pm 2)^{2} \\ \text { or } \\ r=\sqrt{12+\text { their }( \pm 4)^{2}+\text { their }( \pm 2)^{2}} \end{gathered}$ <br> or if considering $\begin{gathered} x^{2}+y^{2}+2 g x+2 f x+c=0, \\ r^{2}=g^{2}+f^{2}-c \\ \text { or } \\ r=\sqrt{g^{2}+f^{2}-c} \end{gathered}$ <br> Must clearly be identifying the radius or radius ${ }^{2}$ <br> May be implied by a correct exact radius or awrt 5.66 | M1 |
|  | $r=\sqrt{32}$ | $r=\sqrt{32}$. Accept exact equivalents such as $4 \sqrt{2} . r=\ldots$ not needed but must clearly be the radius. Do not allow $\pm \sqrt{32}$ unless minus is rejected | A1 |
|  | Correct answer scores both marks |  |  |
|  |  |  | (2) |
| (c) | $x=0 \Rightarrow y^{2}+4 y-12=0$ | Correct quadratic. Allow $16+(y+2)^{2}=32$ | B1 |
|  | $(y+6)(y-2)=0 \Rightarrow y=\ldots$ | Attempts to solve a 3TQ that has come from substituting $x=0$ or $y=0$ into the given equation or their 'changed' equation. May be implied by correct answers for their quadratic. | M1 |
|  | $y=2,-6$ or $(0,2)$ and ( $0,-6$ ) | Correct $y$ values or correct coordinates. Accept sight of these for all 3 marks if no incorrect working seen but must clearly be $y$ values or correct coordinates. This may be implied by the correct roots of a quadratic in $y$. | A1 |
|  |  |  | (3) |
|  |  |  | (7 marks) |


| Question <br> Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 3(a) | $S=r \theta=7 \times 0.8=5.6(\mathrm{~cm})$ | M1: Uses $S=r \theta$ | M1A1 |
|  |  | A1: 5.6 oe e.g. $28 / 5$ |  |
|  | Note that if the 0.8 is converted to degrees e.g. $0.8 \times \frac{180}{\pi}=45.8366 \ldots$, this angle may be rounded or truncated when attempting $\frac{45.8366 \ldots}{360} \times 2 \times \pi \times 7$ for the M1 so allow A1 for awrt 5.6 |  |  |
|  |  |  | (2) |
| (b) | $\angle P O C=\frac{\pi}{2}-0.8=$ awrt 0.771 | M1: Attempts to find $\frac{\pi}{2}-0.8$ or $\pi-\frac{\pi}{2}-0.8$. Allow an attempt to find $\theta$ from $\theta+\frac{\pi}{2}+0.8=\pi$. Accept as evidence awrt 0.77 A1: awrt 0.771 | M1A1 |
|  | Answers in degrees only can score M1A0 e.g. $180-90-0.8 \times \frac{180}{\pi}(=44.163 \ldots)$ |  |  |
|  |  |  | (2) |
| (c) | $\begin{aligned} & 4^{2}+5^{2}-2 \times 4 \times 5 \cos ^{\prime} 0.771^{\prime} \\ & \text { or } \\ & \sqrt{4^{2}+5^{2}-2 \times 4 \times 5 \cos ^{\prime} 0.771^{\prime}} \end{aligned}$ | Correct use of the cosine rule to find $C P$ or $C P^{2}$. NB 0.771 radians is awrt 44 degrees. Ignore lhs for this mark and look for e.g. $4^{2}+5^{2}-2 \times 4 \times 5 \cos ^{\prime} 0.771 \text { or } 44^{\prime}$ | M1 |
|  | $C P^{2}=4^{2}+5^{2}-2 \times 4 \times 5 \cos 0.771$ <br> or $C P=\sqrt{4^{2}+5^{2}-2 \times 4 \times 5 \cos 0.771}$ | A correct expression for $C P$ or $C P^{2}$ with lhs consistent with rhs. Allow awrt 0.77 radians or awrt 44 degrees. (May be implied if a correct numerical value is used in subsequent work) | A1 |
|  | Perimeter $=4+5+2 \times 7+$ '5.6'+ 3.5 ' | $4+5+2 \times 7+\text { their } A Q+\text { their } C P .$ <br> Need to see all 6 lengths but may be implied by e.g. $23+$ ' $5.6^{\prime}+{ }^{\prime} 3.5$ ' | M1 |
|  | $=32.11$ (cm) | Awrt 32.11 (ignore units) | A1 |
|  |  |  | (4) |
|  |  |  | (8 marks) |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 4 (a) | $\begin{aligned} & S_{9}=54 \\ & \Rightarrow 54= \frac{9}{2}(2 a+8 d) \\ & \text { or } \\ & \Rightarrow 54= \frac{9}{2}(a+a+8 d) \end{aligned}$ | Uses a correct sum formula with $n=9$ and $S_{9}=54$ | M1 |
|  | $\Rightarrow a+4 d=6$ * | cso | A1* |
|  | Listing: |  |  |
|  | $\begin{aligned} & a+a+d+a+2 d+\ldots .+a+8 d=54 \\ & \quad \Rightarrow 9 a+36 d=54 \end{aligned}$ <br> Scores M1 for attempting to sum 9 terms (both lines needed) <br> or $a+a+d+a+2 d+a+3 d+a+4 d+a+5 d+a+6 d+a+7 d+a+8 d=54$ <br> Scores M1 on its own and then A1 if they complete correctly. |  |  |
|  |  |  | (2) |
| (b) | $\begin{gathered} a+7 d=\frac{1}{2}(a+6 d) \\ \text { or } \\ \frac{1}{2}(a+7 d)=a+6 d \end{gathered}$ | Uses $t_{8}=\frac{1}{2} t_{7}$ or $\frac{1}{2} t_{8}=t_{7}$ to produce one of these equations. | M1 |
|  | $\begin{gathered} \Rightarrow 6-4 d+7 d=\frac{1}{2}(6-4 d+6 d) \\ \Rightarrow d=\ldots \end{gathered}$ | Uses the given equation from (a) and their second linear equation in $a$ and $d$ and proceeds to find a value for either $a$ or $d$. | M1 |
|  | $\Rightarrow d=-1.5, a=12$ | A1: Either $d=-1.5(\mathrm{oe})$ or $a=12$ | A1A1 |
|  |  | A1: Both $d=-1.5$ (oe) and $a=12$ |  |
|  | Note that use of $\frac{1}{2} t_{8}=t_{7}$ in (b) gives $a=30$ and $d=-6$ |  |  |
|  |  |  | (4) |
|  |  |  | (6 marks) |


| Question <br> Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 5 (a)(i) | $\log _{3}\left(\frac{x}{9}\right)=\log _{3} x-\log _{3} 9=y-2$ | $\begin{aligned} & \text { M1: } \log _{3}\left(\frac{x}{9}\right)=\log _{3} x-\log _{3} 9 \text { or } \\ & \log _{3}\left(\frac{x}{9}\right)=\log _{3} x+\log _{3} \frac{1}{9} \end{aligned}$ <br> Correct use of the subtraction rule or addition rule. Ignore the presence or absence of a base and any spurious " $=0$ " <br> A1: $y-2$ | M1A1 |
|  | An answer left as $\log _{3} 3^{y-2}$ scores M1A0 |  |  |
|  | Note that $\log _{3}\left(\frac{x}{9}\right)=\log _{3} x-\log _{3} 9=y-\log _{3} 9$ scores M1A0 |  |  |
| (ii) | $\log _{3} \sqrt{x}=\log _{3} x^{\frac{1}{2}}=\frac{1}{2} \log _{3} x=\frac{1}{2} y$ | $\frac{1}{2} y$ or equivalent | B1 |
|  |  |  | (3) |
| (b) | $2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=2 \Rightarrow 2(y-2)-\frac{1}{2} y=2$ <br> Uses their answers from part (a) to create a linear equation in $y$ (condone poor use of brackets e.g. $2(y-2)=2 y-2$ and also the slip $(y-2)-\frac{1}{2} y=2$ for this mark) |  | M1 |
|  | $\Rightarrow y=4$ | Correct value for $y$. | A1 |
|  | Note that arriving at $(y-2)^{2}-\frac{1}{2} y=2$ above scores M0 (not linear) but does have a solution $y=4$ so look out for $y=4$ not being derived correctly. |  |  |
|  | $\log _{3} x=4 \Rightarrow x=3^{4}$ | Correct method for undoing log. Dependent on the first $M$ | dM1 |
|  | $\Rightarrow x=81$ | cao | A1 |
|  |  |  | (4) |
|  |  |  | (7 marks) |
| Alt 1 (b) | $2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=\log _{3}\left(\frac{(x / 9)^{2}}{\sqrt{x}}\right)$ <br> or $2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=2 \log _{3} x-2 \log _{3} 9-\log _{3} \sqrt{x}=\log _{3} \frac{x^{2}}{\sqrt{x}}+\ldots$ <br> Combines two log terms in $\boldsymbol{x}$ correctly to obtain a single log term |  | M1 |
|  | $\begin{gathered} \log _{3}\left(\frac{(x / 9)^{2}}{\sqrt{x}}\right)=2 \\ \text { or } \\ \log _{3}\left(\frac{x^{2}}{\sqrt{x}}\right)=6 \end{gathered}$ | Correct equation | A1 |
|  | $\left(\frac{(x / 9)^{2}}{\sqrt{x}}\right)=3^{2}$ or $\left(\frac{x^{2}}{\sqrt{x}}\right)=3^{6}$ | Correct method for undoing log. Dependent on the first M | dM1 |
|  | $\Rightarrow x=81$ | cao | A1 |


| Alt 2 (b) Uses $x=3^{y}$ | $2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=2 \log _{3}\left(\frac{3^{y}}{9}\right)-\log _{3} 3^{\frac{y}{2}}=\log _{3}\left(\frac{3^{\frac{3 y}{2}}}{81}\right)$ <br> Combines logs correctly |  | M1 |
| :---: | :---: | :---: | :---: |
|  | $\log _{3}\left(\frac{3^{\frac{3 y}{2}}}{81}\right)=2 \Rightarrow y=4$ | Correct value for $y$ | A1 |
|  | $\log _{3} x=4 \Rightarrow x=3^{4}$ | Correct method for undoing log. Dependent on the first $M$ | dM1 |
|  | $\Rightarrow x=81$ | cao | A1 |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 6(a)(i) | $\frac{3}{2}$ | Accept exact equivalents | B1 |
| (ii) | $y=0, \quad 3 x+5=0 \Rightarrow x=-\frac{5}{3}$ | M1: Sets $y=0$ and attempts to find $x$. Accept as evidence $3 x+5=0 \Rightarrow x=$.. or awrt -1.7 | M1A1 |
|  |  | A1: $x=-\frac{5}{3}$ or exact equivalent including 1.6 recurring (i.e. a clear dot over the 6) |  |
|  |  |  | (3) |
| (b) | Gradient $l_{2}=-\frac{1}{-\frac{3}{2}{ }^{\prime \prime}}=-\frac{2}{3}$ | Uses $m_{2}=-\frac{1}{m_{1}}$ to find the gradient of $l_{2}$ (may be implied by their line equation). Allow an attempt to find $m_{2}$ from $m_{1} \times m_{2}=-1$. | M1 |
|  | Point $B$ has $y$ coordinate of 4 | This may be embedded within the equation of the line but must be seen in part (b). | B1 |
|  | $\begin{gathered} y-4^{\prime}==^{\prime}-\frac{2}{3}(x-1) \\ \text { or } \\ \frac{y-4^{\prime}}{x-1}='-\frac{2}{3} \end{gathered}$ | A correct straight line method with a changed gradient and their point ( $1,{ }^{\prime} 4$ '). There must have been attempt to find the $y$ coordinate of $B$. If using $y=m x+c$, must reach as far as finding a value for $c$. | M1 |
|  | $\begin{gathered} y-4=-\frac{2}{3}(x-1) \\ \text { or } \\ \frac{y-4}{x-1}=-\frac{2}{3} \end{gathered}$ | A correct un-simplified equation | A1 |
|  | $2 x+3 y-14=0$ | Accept $A(2 x+3 y-14)=0$ where $A$ is an integer. Terms can be in any order but must have ' $=0$ '. | A1 |
|  |  |  | (5) |
| Alt (b) | Gradient $l_{2}=-\frac{1}{* \frac{3}{2}{ }^{\prime \prime}}=-\frac{2}{3}$ | Uses $m_{2}=-\frac{1}{m_{1}}$ to find the gradient of $l_{2}$ as before | M1 |
|  | $\frac{3}{2} x+\frac{5}{2}=-\frac{2}{3} x+c$ | A correct statement for $l_{1}=l_{2}$ | B1 |
|  | $x=1 \Rightarrow c=\frac{14}{3}$ | Substitutes $x=1$ to find a value for c | M1 |
|  | $y=-\frac{2}{3} x+\frac{14}{3}$ | Correct equation | A1 |
|  | $2 x+3 y-14=0$ | Accept $A(2 x+3 y-14)=0$ where $A$ is an integer. | A1 |


| (c) | $y=0 \Rightarrow 2 x-14=0 \Rightarrow x=7$ | Attempts to find $C$ using $y=0$ in the equation obtained in part (b) | M1 |
| :---: | :---: | :---: | :---: |
|  | Attempts Area of triangle using $\frac{1}{2} \times A C \times(y$ coord of $B)$ $=\frac{1}{2} \times\left({ }^{\prime} 7+{ }^{\prime} \frac{5}{3} '\right) \times 4^{\prime}$ <br> or <br> Attempts Area of triangle using 2 triangles $\left.\frac{1}{2} \times\left(1+\left(\frac{5}{3}\right)\right)^{\prime}\right) \times(y \text { coord of } B)+\frac{1}{2} \times\left('^{\prime}-1\right) \times(y \text { coord of } B)$ <br> y make a second/different attempt to find the $y$ coordinate of $B$ then still allow this mark. |  | M1 |
|  | $=\frac{52}{3}$ | Area $=\frac{52}{3}$ or exact equivalent e.g $17 \frac{1}{3}$ or 17.3 recurring (i.e. a clear dot over the 3) | A1 |
|  |  |  | (3) |
|  |  |  | (11 marks) |
| Way 2 6(c) | $y=0 \Rightarrow 2 x-14=0 \Rightarrow x=7$ | Attempts to find $C$ using $y=0$ in the equation obtained in part (b) | M1 |
|  | Attempts area of triangle using $\frac{1}{2} A B \times B C=\frac{1}{2} \times \sqrt{\frac{208}{9}} \times \sqrt{52}$ <br> A complete method for the area including correct attempts at finding $A B$ and $B C$ using their values. |  | M1 |
|  | $=\frac{52}{3}$ | Area $=\frac{52}{3}$ or exact equivalent e.g. $17 \frac{1}{3}$ or 17.3 recurring (i.e. a clear dot over the 3) | A1 |
|  |  |  | (3) |
| Way 3 6(c) | $y=0 \Rightarrow 2 x-14=0 \Rightarrow x=7$ | Attempts to find $C$ using $y=0$ in the equation obtained in part (b) | M1 |
|  | $\frac{1}{2}\left\|\begin{array}{rrrr}1 & 7 & -\frac{5}{3} & 1 \\ 4 & 0 & 0 & 4\end{array}\right\|=\frac{1}{2}\left\|-\frac{20}{3}-28\right\|$ | Uses shoelace method. Must see a correct method including $1 / 2$. | M1 |
|  | $=\frac{52}{3}$ | Area $=\frac{52}{3}$ or exact equivalent e.g $17 \frac{1}{3}$ or 17.3 recurring (i.e. a clear dot over the 3) | A1 |
|  |  |  | (3) |
|  |  |  |  |



| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 7 (i) | $\frac{2+4 x^{3}}{x^{2}}=\frac{2}{x^{2}}+4 x=2 x^{-2}+4 x$ | Attempts to split the fraction. This can be awarded for $\frac{2}{x^{2}}$ or $\frac{4 x^{3}}{x^{2}}$ or may be implied by the sight of one correct index e.g $p x^{-2}$ or $q x$ providing one of these terms is obtained correctly. So for example $\frac{2+4 x^{3}}{x^{2}}=2+4 x^{3}+x^{-2}$ would be M0 as the $x^{-2}$ has been obtained incorrectly. | M1 |
|  | $\int 2 x^{-2}+4 x \mathrm{~d} x=2 \times \frac{x^{-1}}{-1}+4 \times \frac{x^{2}}{2}(+c)$ | dM1: $x^{n} \rightarrow x^{n+1}$ on any term. Dependent on the first M. A1: At least one term correct, simplified or un-simplified. Allow powers and coefficients to be unsimplified e.g. $2 \times \frac{x^{-2+1}}{-1},+4 \times \frac{x^{1+1}}{2}$ | dM1A1 |
|  | $=-\frac{2}{x}+2 x^{2}+c$ | All correct and simplified including the $+c$. Accept equivalents such as $-2 x^{-1}+2 x^{2}+c$ | A1 |
|  |  |  | (4) |
|  | There are no marks in (ii) for use of the trapezium rule - must use integration |  |  |
| (ii) | $\begin{gathered} \int\left(\frac{4}{\sqrt{x}}+k\right) \mathrm{d} x \\ =\int\left(4 x^{-0.5}+k\right) \mathrm{d} x=4 \frac{x^{0.5}}{0.5}+k x(+c) \end{gathered}$ | M1: Integrates to obtain either $\alpha x^{0.5}$ or $k x$ <br> A1: Correct integration (simplified or un-simplified). Allow powers and coefficients to be un-simplified e.g. $4 \frac{x^{-0.5+1}}{0.5}$. There is no need for $+c$ | M1A1 |
|  | $\left[4 \frac{x^{0.5}}{0.5}+k x\right]_{2}^{4}=30 \Rightarrow(8 \sqrt{4}+4 k)-(8 \sqrt{2}+2 k)=30$ <br> Substitutes both $x=4$ and $x=2$ into changed expression involving $k$, subtracts either way round and sets equal to 30 Condone poor use or omission of brackets when subtracting. |  | M1 |
|  | $2 k+16-8 \sqrt{2}=30 \Rightarrow k=7+4 \sqrt{2}$ | ddM1: Attempts to solve for $k$ from a linear equation in $k$. Dependent upon both M's and need to have $\operatorname{seen} \int k \mathrm{~d} x \rightarrow k x$. <br> A1: $7+4 \sqrt{2}$ or exact equivalent e.g. $7+2^{2.5}, 7+4 \times 2^{0.5}$ | ddM1A1 |
|  |  |  | (5) |
|  |  |  | (9 marks) |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 8(a) | $\begin{gathered} \mathrm{f}(3)=2(3)^{3}-5(3)^{2}-23(3)-10 \\ \text { or } \\ 2 x^{2}+\ldots \ldots \ldots \ldots \\ x - 3 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } - 2 3 x - 1 0 } \\ \ldots \\ \ldots \end{gathered}$ | Attempts to calculate $\mathrm{f}( \pm 3)$ or divides by $(x-3)$. For long division need to see minimum as shown with a constant remainder. | M1 |
|  |  |  |  |
|  | (Remainder $=$ ) -70 | -70 | A1 |
|  |  |  | (2) |
|  | Mark (b) and (c) together |  |  |
| (b) | $\mathrm{f}(-2)=2(-2)^{3}-5(-2)^{2}-23(-2)-10$ <br> Or $\frac{2 x^{2}+\ldots \ldots \ldots \ldots . .}{x + 2 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } - 2 3 x - 1 0 }}$ | Attempts $\mathrm{f}( \pm 2)$ or divides by $(x+2)$. For long division need to see minimum as shown with a constant remainder. | M1 |
|  | Remainder $=0$, hence $x+2$ is a factor | Obtains a remainder zero and makes a conclusion (not just a tick or e.g. QED). Do not need to refer to the remainder in the conclusion but a zero remainder must have been obtained. (May be seen in a preamble) | A1* |
|  | Note that just $\mathrm{f}(-2)=0$ therefore $(x+2)$ is a factor scores M0A0 as there must be some evidence of a calculation |  |  |
|  |  |  | (2) |
| (c) | $\frac{2 x^{3}-5 x^{2}-23 x-10}{(x+2)}=a x^{2}+b x+c$ | Divides $\mathrm{f}(x)$ by $(x+2)$ or compares coefficients or uses inspection to obtain a quadratic expression with $2 x^{2}$ as the first term. | M1 |
|  | $2 x^{2}-9 x-5$ | Correct quadratic seen | A1 |
|  | $\mathrm{f}(x)=(x+2)(2 x+1)(x-5)$ <br> dM1: Attempt to factorise their 3TQ $\left(2 x^{2} \ldots\right)$. The usual rules apply here so if $2 x^{2}-9 x-5$ is factorised as $(x-5)\left(x+\frac{1}{2}\right)$, this scores M0 unless the factor of 2 appears later. <br> A1: $(x+2)(2 x+1)(x-5)$ oe e.g. $2(x+2)\left(x+\frac{1}{2}\right)(x-5)$. All factors together on one line. Must appear here and not in (d). Ignore subsequent attempts to solve. |  | dM1A1 |
|  | SC: This is a hence question but we will allow a special case of 1100 for candidates in this part who use their graphical calculators to get roots of $\mathbf{- 2}$, -0.5 and 5 and write down the correct factorised form. |  |  |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
|  | But note that if all that is seen is $(x+2)\left(x+\frac{1}{2}\right)(x-5)$ this scores $\mathbf{1 0 0 0}$ |  |
|  |  | (4) |


| (d) | $3^{t}={ }^{\prime} 5$ ' $\Rightarrow t \log 3=\log ^{\prime} 5 '$ | Solves $3^{t}=k$ where $k>0$ and follows from their (c) to obtain $t \log 3=\log k$. <br> Accept sight of $t=\log _{3} k$ where $k>0$ and follows from their (c) | M1 |
| :---: | :---: | :---: | :---: |
|  | $\Rightarrow t=$ awrt 1.465 only | $t=$ awrt 1.465 and no other solutions | A1 |
|  |  |  | (2) |
|  |  |  | (10 marks) |


| Question <br> Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 9(a) | $\begin{aligned} & \mathrm{f}(x)=8 x^{-1}+\frac{1}{2} x-5 \\ & \Rightarrow \mathrm{f}^{\prime}(x)=-8 x^{-2}+\frac{1}{2} \end{aligned}$ | M1: $-8 x^{-2}$ or $\frac{1}{2}$ | M1A1 |
|  |  | A1: Fully correct $\mathrm{f}^{\prime}(x)=-8 x^{-2}+\frac{1}{2}$ (may be un-simplified) |  |
|  | Sets $-8 x^{-2}+\frac{1}{2}=0 \Rightarrow x=4$ | M1: Sets their $\mathrm{f}^{\prime}(x)=0$ i.e. a "changed" function (may be implied by their work) and proceeds to find $x$. | M1A1 |
|  |  | A1: $x=4$ (Allow $x= \pm 4$ ) |  |
|  | $(4,-1)$ | Correct coordinates (allow $x=4, y=-1$ ). Ignore their $(-4, \ldots)$ | A1 |
|  |  |  | (5) |
| (b)(i) | $(x=) 2,8$ | $x=2$ and $x=8$ only. Do not accept as coordinates here. | B1 |
| (b)(ii) | $(4,1)$ | $(4,1)$ or follow through on their solution in (a). Accept $(x, y+2)$ from their $(x, y)$. With no other points. | B1ft |
| (b)(iii) | $(x=) 2, \frac{1}{2}$ | Both answers are needed and accept $(2,0),\left(\frac{1}{2}, 0\right)$ here. Ignore any reference to the image of the turning point. | B1 |
|  |  |  | (3) |
|  |  |  | (8 marks) |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
|  | Mark (a) and (b) together |  |  |
| 10(a) | $(1+a x)^{20}=1^{20}+{ }^{20} C_{1} 1^{19}(a x)^{1}+{ }^{20} C_{2} 1^{18}(a x)^{2} .$ <br> Note that the notation $\binom{20}{1}$ may be seen for ${ }^{20} C_{1}$ etc. |  |  |
|  | ${ }^{20} C_{1} 1^{19}(a x)^{1}=4 x \Rightarrow 20 a=4 \Rightarrow a=0.2$ | $\begin{aligned} & \text { M1: Uses either }{ }^{20} C_{1}\left(1^{19}\right)(a x)^{1}=4 x^{1} \\ & \text { or } 20 a=4 \text { to obtain a value for } a . \\ & \hline \text { A1: } a=0.2 \text { or equivalent } \end{aligned}$ | M1A1 |
|  |  |  | (2) |
| (b) |  Uses ${ }^{20} C_{2}\left(1^{18}\right)(a x)^{2}=p x^{2}$ and their <br> ${ }^{20} C_{2} 1^{18}(a x)^{2}=p x^{2}$ <br> $\Rightarrow \frac{20 \times 19}{2} \times\left('^{\prime} 0.2^{\prime}\right)^{2}=p$ <br> $\Rightarrow p=\ldots$ <br> value of $a$ to find a value for $p$.  <br> Condone the use of $a$ rather than $a^{2}$  <br> in finding $p$. Maybe implied by an  <br> attempt to find a value for $190 a^{2}$ or  <br> $190 a$. Note: ${ }^{20} C_{18}$ can be used for  <br> ${ }^{20} C_{2}$  |  | M1 |
|  | $p=7.6$ | Accept equivalents such as $\frac{38}{5}, \frac{190}{25}$ | A1 |
|  |  |  | (2) |
| (c) | Term is ${ }^{20} C_{4} 1^{16}(a x)^{4} \Rightarrow q=\ldots \quad$Identifies the correct term and uses <br> their value of $a$ to find a value for $q$. <br> Condone the use of $a$ rather than $a^{4}$. <br> Must be an attempt to calculate <br> ${ }^{20} C_{4} a^{4}$ or ${ }^{20} C_{4} a$ or ${ }^{20} C_{16} a^{4}$ or ${ }^{20} C_{16} a$ |  | M1 |
|  | $q={ }^{20} C_{4} \times 0.2^{4}=\frac{969}{125}=(7.752)$ | $q=\frac{969}{125}$ or exact equivalent e.g. <br> 7.752, $7 \frac{94}{125}$. <br> $q=\frac{969}{125} x^{4}$ scores A0 but $q x^{4}=\frac{969}{125} x^{4}$ scores A1. | A1 |
|  |  |  | (2) |
|  |  |  | (6 marks) |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 11(i) | $3 \cos ^{2} x+1=4\left(1-\cos ^{2} x\right)$ <br> or $3\left(1-\sin ^{2} x\right)+1=4 \sin ^{2} x$ <br> or $3+\tan ^{2} x+1=4 \tan ^{2} x$ <br> or $3 \frac{\cos 2 x+1}{2}+1=4 \frac{1-\cos 2 x}{2}$ | Uses $\sin ^{2} x=1-\cos ^{2} x$ to produce an equation in $\cos ^{2} x$ or uses $\cos ^{2} x=1-\sin ^{2} x$ to produce an equation in $\sin ^{2} x$ or uses $\cos ^{2} x+\sin ^{2} x=1$ and divides by $\cos ^{2} x$ to produce an equation in $\tan ^{2} x$ or uses $\sin ^{2} x$ and $\cos ^{2} x$ in terms of $\cos 2 x$. Condone missing brackets. | M1 |
|  | $\begin{aligned} \Rightarrow \cos ^{2} x & =\frac{3}{7} \text { or } \sin ^{2} x \end{aligned}=\frac{4}{7} \text { or }, ~=-\frac{4}{7} \text { or } \cos 2 x=-\frac{1}{2} .$ | Correct value for $\cos ^{2} x$ or $\sin ^{2} x$ or $\tan ^{2} x$ or $\cos 2 x$. This may be implied by $\cos x=\sqrt{\frac{3}{7}}$ or $\sin x=\sqrt{\frac{4}{7}}$ or $\tan x=\sqrt{\frac{4}{3}}$ | A1 |
|  | $\Rightarrow \cos x= \pm \sqrt{ }$ <br> A correct order of operations to $\begin{aligned} \cos ^{2} x & =p \Rightarrow \cos x \\ \sin ^{2} x & =p \Rightarrow \sin x \\ \tan ^{2} x & =p \Rightarrow \tan x \\ \cos 2 x=p & \Rightarrow 2 x= \end{aligned}$ <br> This may be implied by on | $\Rightarrow x=\cos ^{-1}\left(\sqrt{\frac{3}{7}}\right)$ <br> tain a correct expression for $x$. E.g. $\begin{aligned} & \sqrt{p} \Rightarrow x=\cos ^{-1} \sqrt{p} \text { or } \\ & \sqrt{p} \Rightarrow x=\sin ^{-1} \sqrt{p} \text { or } \\ & \sqrt{p} \Rightarrow x=\tan ^{-1} \sqrt{p} \text { or } \\ & \operatorname{os}^{-1} p \Rightarrow x=\frac{1}{2} \cos ^{-1} p \end{aligned}$ <br> correct answer for their values. | M1 |
|  |  | A1: Any two of awrt 0.86, 2.28, 4.00, 5.43 |  |
|  | $\Rightarrow x=$ awrt 0.86, 2.28, $4.00,5.43$ | A1: All four of awrt $0.86,2.28,4.00,5.43$ with no additional solutions in the range and ignore solutions outside the range. | A2,1,0 |
|  | Note that answers in degrees are: 49.11, 130.89, 229.11, 310.89 <br> Allow A1 for awrt two of these but deduct the final A mark. <br> For answers given as awrt $0.27 \pi, 0.73 \pi, 1.27 \pi, 1.73 \pi$, allow A1 only for any 2 of these but deduct the final A mark. |  |  |
|  |  |  | (5) |


| (ii) | $\begin{gathered} 5 \sin \left(\theta+10^{\circ}\right)=\cos \left(\theta+10^{\circ}\right) \\ \Rightarrow \tan \left(\theta+10^{\circ}\right)=0.2 \end{gathered}$ | M1: Reaches $\tan (\ldots)=\alpha$ where $\alpha$ is a constant including zero. | M1A1 |
| :---: | :---: | :---: | :---: |
|  | $\Rightarrow \theta=\tan ^{-1}(0.2)-10^{\circ}$ | For the correct order of operations to produce one value for $\theta$. <br> Accept $\theta=\tan ^{-1}(\alpha)-10, \alpha \neq 0$ or one correct answer as evidence. Dependent on the first $M$. | dM1 |
|  |  | A1: One of awrt $\theta=1.3,181.3$ |  |
|  | $\Rightarrow \theta=\operatorname{awrt} 1.3{ }^{\circ}, 181.3^{\circ}$ | A1: Both awrt $\theta=1.3,181.3$ and no other solutions in range and ignore solutions outside the range. | A1A1 |
|  | Note that final answers in radians in (ii) cannot score the final 2 A marks but the earlier marks are available (maximum 11100) |  |  |
|  |  |  | (5) |
|  |  |  | (10 marks) |
|  | Alternative 1 for (ii) by squaring: |  |  |
|  | $\begin{aligned} & 5 \sin (\ldots)=\cos (\ldots) \\ & \Rightarrow 25 \sin ^{2}(\ldots)=\cos ^{2}(\ldots) \\ & \Rightarrow 25\left(1-\cos ^{2}(\ldots)\right)=\cos ^{2}(\ldots) \\ & \text { or } \\ & 25 \sin ^{2}(\ldots)=1-\sin ^{2}(\ldots) \\ & \quad \text { Leading to } \\ & \sin ^{2}(\ldots)=\ldots \text { or } \cos ^{2}(\ldots)=\ldots \end{aligned}$ | Squares both sides, replaces $\sin ^{2}(\ldots)$ by $1-\cos ^{2}(\ldots)$ or replaces $\cos ^{2}(\ldots)$ by <br> $1-\sin ^{2}(\ldots)$ and reaches $\sin ^{2}(\ldots)=\ldots$ or $\cos ^{2}(\ldots)=\ldots$ | M1 |
|  | $\sin ^{2}(\ldots)=\frac{1}{26}$ <br> or $\cos ^{2}(\ldots)=\frac{25}{26}$ | Correct value for $\sin ^{2}(\ldots)$ or $\cos ^{2}(\ldots)$. This may be implied by $\sin (\ldots)=\frac{1}{\sqrt{26}}$ or $\cos (\ldots)=\sqrt{\frac{25}{26}}$ | A1 |
|  | $\begin{aligned} & \theta=\sin ^{-1} \frac{1}{\sqrt{26}}-10^{\circ} \\ & \text { or } \\ & \theta=\cos ^{-1} \frac{5}{\sqrt{26}}-10^{\circ} \end{aligned}$ | For the correct order of operations to produce one value for $\theta$ as shown or accept one correct answer as evidence. Dependent on the first $M$. | dM1 |
|  |  | A1: One of awrt $\theta=1.3,181.3$ |  |
|  | $\Rightarrow \theta=1.3^{\circ}, 181.3^{\circ}$ | A1: Both awrt $\theta=1.3,181.3$ and no other solutions in range and ignore solutions outside the range. | A1A1 |
|  | Note that final answers in radians in (ii) cannot score the final 2 A marks but the earlier marks are available (maximum 11100) |  |  |


|  | Alternative 2 for (ii) Using the addition formulae |  |  |
| :---: | :---: | :---: | :---: |
| Alt (ii) | $5 \sin \theta \cos 10+5 \cos \theta \sin 10=\cos \theta \cos 10-\sin \theta \sin 10$ <br> Uses the correct addition formulae on both sides and rearranges to $\tan (\ldots)=$ |  | M1 |
|  | $\tan \theta=\frac{\cos 10-5 \sin 10}{5 \cos 10+\sin 10}=(0.0229)$ | Correct value for $\tan \theta$ | A1 |
|  | $\tan \theta=0.0229 \Rightarrow \theta=\ldots$ | Uses arctan to produce one value for $\theta$. Dependent on the first $M$. | dM1 |
|  |  | A1: One of awrt $\theta=1.3,181.3$ |  |
|  | $\Rightarrow \theta=1.3^{\circ}, 181.3^{\circ}$ | A1: Both awrt $\theta=1.3,181.3$ and no other solutions in range and ignore solutions outside the range | A1A1 |
|  | Note that final answers in radians in (ii) cannot score the final 2 A marks but the earlier marks are available (maximum 11100) |  |  |
|  |  |  | (5) |



For part (b), in all cases, look to apply the appropriate scheme that gives the candidate the best mark





| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 13(a)(i) |  |  |
|  | The maximum must be smooth and not form a point and the branches must not clearly turn back in on themselves. <br> or <br> A continuous graph passing through or touching at the points $(-c, 0),(c, 0)$ and $\left(0, c^{2}\right)$. They can appear on their sketch or within the body of the script but there must be a sketch. Allow these marked as $-c, c$ and $c^{2}$ in the correct places. Allow $(0,-c),(0, c)$ and $\left(c^{2}, 0\right)$ as long as they are marked in the correct places. If there is any ambiguity, the sketch takes precedence. | B1 |
|  | A fully correct diagram with the curve in the correct position and the intercepts and shape as described above. The maximum must be on the $y$-axis and the branches must extend below the $x$-axis. | B1 |
| (a)(ii) | There must be a sketch to score any marks in (a) |  |
|  | § Shape. A positive cubic with only one maximum and one minimum. The curve must be smooth at the maximum and at the minimum (not pointed). | B1 |
|  |  <br> A smooth curve that touches or meets the $x$-axis at the origin and $(3 c, 0)$ in the correct place and no other intersections. The origin does not need to be marked but the $(3 c, 0)$ does. Allow $3 c$ or $(0,3 c)$ to be marked in the correct place. May appear on their sketch or within the body of the script. If there is any ambiguity, the sketch takes precedence. | B1 |
|  | Maximum at the origin (allow the maximum to form a point or cusp) | B1 |
|  | There must be a sketch to score any marks in (a) | (5) |
| (b) | Intersect when $x^{2}(x-3 c)=c^{2}-x^{2} \Rightarrow x^{3}-3 c x^{2}=c^{2}-x^{2}$ <br> Sets equations equal to each other and attempts to multiply out the bracket or vice versa | M1 |
|  | $x^{3}+x^{2}-3 c x^{2}-c^{2}=0$  <br> $\Rightarrow x^{3}+(1-3 c) x^{2}-c^{2}=0^{*}$ Collects to one side (may be implied), <br> factorises the $x^{2}$ terms and obtains printed <br> answer with no errors. There must be an <br> intermediate line of working. <br> Allow $x^{3}+x^{2}(1-3 c)-c^{2}=0$ or  <br> $0=x^{3}+(1-3 c) x^{2}-c^{2}$ or  <br> $0=x^{3}+x^{2}(1-3 c)-c^{2}$  | A1* |
|  |  | (2) |


| (c) | $8+4(1-3 c)-c^{2}=0$ | Substitutes $x=2$ to give a correct un- <br> simplified form of the equation. | M1 |
| :---: | :---: | :--- | :--- |
|  | $c^{2}+12 c-12=0$ | Correct 3 term quadratic. Allow any <br> equivalent form with the terms collected <br> (may be implied) | A1 |
|  | $(c+6)^{2}-36-12=0 \Rightarrow c=\ldots$ <br> or | Solves their 3TQ by using the formula or <br> completing the square only. This may be <br> implied by a correct exact answer for their <br> $3 T Q . ~(M a y ~ n e e d ~ t o ~ c h e c k) ~$ | M1 |
|  | $c=\frac{-12 \pm \sqrt{12^{2}-4 \times 1 \times(-12)}}{2}$ | $c=4 \sqrt{3}-6$ or $c=-6+4 \sqrt{3}$ only | A1 |
|  | -6 |  |  |


| Question Number | Scheme |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 14 (a) | Allow the use of $S$ or $S_{n}$ throughout without penalty. $S=a+a r+a r^{2}+\ldots \ldots . a r^{n-1} \text { and } r S=a r+a r^{2}+a r^{3}+\ldots \ldots . . a r^{n}$ <br> There must be a minimum of ' 3 ' terms and must include the first and the $n$th term. Condone for this mark only $S=a+a r+a r^{2}+\ldots . . . . a r^{n}$ and $r S=a r+a r^{2}+a r^{3}+\ldots . . . a r^{n+1}$ and allow commas instead of + 's but see note below. |  |  | M1 |
|  | $S-r S=a-a r^{n}$ | Subtra specia For thi must b and $r S$ possib | s either way around. As a case allow $S-r S=a+a r^{n}$ mark, their $S$ and their $r S$ different but it must be $S$ hey are considering with missing terms or slips. | M1 |
|  | $\Rightarrow S(1-r)=a\left(1-r^{n}\right) \Rightarrow S=\frac{a\left(1-r^{n}\right)}{(1-r)}$ | dM1: previo commo $S=$ | ependent upon both s M's. It is for taking out a factor of $S$ and achieving |  |
|  |  | A1*: F errors comm $S=\frac{a(i}{( }$ <br> printed | lly correct proof with no or omissions. The use of instead of + 's is an error. $\left(r^{n}-1\right)$ without reaching the answer is A0 | dM1A1* |
|  |  |  |  | (4) |
| $\begin{gathered} \text { (a) Way } \\ 2 \end{gathered}$ | $S=\frac{\left(a+a r+a r^{2}+\ldots \ldots . a r^{n-1}\right)(1-r)}{1-r}$ | Gives must in and mu $1-r$ | minimum of ' 3 ' terms and lude the first and the $n$th tiplies top and bottom by | M1 |
|  | $S=\frac{a+a r+a r^{2}+\ldots \ldots . . a r^{n-1}-a r-a r^{2}-\ldots-a r^{n}}{1-r}$ |  | Expands the top with a minimum of '3' terms in each and must include the first and the $n$th term | M1 |
|  | $S=\frac{a\left(1-r^{n}\right)}{(1-r)}$ | dM1: Dependent upon both previous M's. It is for taking out a common factor of $a$ on top and achieving $S=\ldots$ |  | dM1A1 |
|  |  | A1*: Fully correct proof with no errors or omissions. The use of commas instead of + 's is an error. $S=\frac{a\left(r^{n}-1\right)}{(r-1)}$ without reaching the printed answer is A0 |  |  |


| (b) | $U=180 \times 0.93^{n}$ with $n=4$ or 5 | Attempts $U=180 \times 0.93^{n}$ with $n=4$ or 5 . Accept $U=167.4 \times 0.93^{n}$ with $n=3$ or 4 Allow 93\% for 0.93 | M1 |
| :---: | :---: | :---: | :---: |
|  | $U_{5}=180 \times(0.93)^{5}=125.2$ (litres) | Cso. Awrt 125.2 | A1* |
|  | Allow 93\% or 1-7\% for 0.93 |  |  |
|  |  |  | (2) |
| (c) | Attempts $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$ with any combination of:$\begin{gathered} n=20 / 21 \quad a=180 / 167.4 \text { and } r=0.93 \\ \text { Allow } 93 \% \text { for } 0.93 \end{gathered}$ |  | M1 |
|  | $\begin{gathered} S=\frac{167.4\left(1-0.93^{20}\right)}{(1-0.93)} \text { or } S=180 \times \frac{0.93\left(1-0.93^{20}\right)}{(1-0.93)} \\ \quad \text { or } \\ S=\frac{180\left(1-0.93^{21}\right)}{(1-0.93)}-180 \end{gathered}$ <br> A correct numerical expression for the sum (may be implied by awrt 1831) Allow $93 \%$ or $1-7 \%$ for 0.93 |  | A1 |
|  | 1831 (litres) | 1831 only (Ignore units). Do not isw here, so 1831 followed by $1831 \times 20=\ldots$ scores A0. | A1 |
|  |  |  | (3) |
|  |  |  | (9 marks) |

## Listing:

| (b) | Sight of awrt $180,167,156,145$, 135,125 | Starts with 180 and multiplies by 0.93 either 4 or 5 times showing each result at least to the nearest litre and chooses the $5^{\text {th }}$ or $6^{\text {th }}$ term | M1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $U_{5}=125.2$ (litres) | Must see all values accurate to 1 dp : e.g. awrt 180, 167.4, 155.7, 144.8, (134.6 or 134.7), 125.2 | A1* |  |
|  |  |  |  | (2) |
| (c) | $\begin{gathered} \text { Total }=180 \times 0.93+180 \times 0.93^{2}+\ldots \ldots .+180 \times 0.93^{19}+180 \times 0.93^{20}=\ldots \\ \text { Finds an expression for the sum of } 20 \text { or } 21 \text { terms } \end{gathered}$ |  | M1 |  |
|  | All sums accurate to awrt 1dp $167.4+155.7+144.8+134.6+125.2+\ldots . .42 .2$A correct numerical expression for the sum (may be implied by awrt 1831) |  | A1 |  |
|  | 1831 (litres) | 1831 only (Ignore units). Do not isw here, so 1831 followed by $1831 \times 20=\ldots$ scores A0. | A1 |  |
|  |  |  |  | (3) |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 15 | $\text { Area of triangle }=\frac{1}{2} \times(2 r)^{2} \sin \left(\frac{\pi}{3} \text { or } 60\right) \text { or } \frac{1}{2} \times(r)^{2} \sin \left(\frac{\pi}{3} \text { or } 60\right)$ <br> Correct method for the area of either triangle. Ignore any reference to which triangle they are finding the area of. | M1 |
|  | Area of sector $=\frac{1}{2} \times r^{2} \times \frac{\pi}{3} \quad \begin{aligned} & \text { Use of the sector formula } \frac{1}{2} r^{2} \theta \text { with } \\ & \theta=\frac{\pi}{3} \text { which may be embedded } \\ & \text { within a segment }\end{aligned}$ | M1 |
|  | $\text { Area } R=\text { Sector }+2 \text { Segments }=\frac{1}{2} r^{2} \times \frac{\pi}{3}+2 \times\left(\frac{1}{2} r^{2} \times \frac{\pi}{3}-\frac{1}{2} r^{2} \times \frac{\sqrt{3}}{2}\right)$ $\text { Area } R=\text { Triangle }+3 \text { Segments }=\frac{1}{2} r^{2} \times \frac{\sqrt{3}}{2}+3 \times\left(\frac{1}{2} r^{2} \times \frac{\pi}{3}-\frac{1}{2} r^{2} \times \frac{\sqrt{3}}{2}\right)$ $\text { Area } R=3 \text { Sectors }-2 \text { Triangles }=3 \times \frac{1}{2} r^{2} \times \frac{\pi}{3}-2 \times\left(\frac{1}{2} r^{2} \times \frac{\sqrt{3}}{2}\right)$ <br> Area $R=$ Big triangle -3 White bits $=\frac{1}{2} \times(2 r)^{2} \frac{\sqrt{3}}{2}-3 \times\left(\frac{1}{2} r^{2} \times \frac{\sqrt{3}}{2}-\left(\frac{1}{2} r^{2} \times \frac{\pi}{3}-\frac{1}{2} r^{2} \times \frac{\sqrt{3}}{2}\right)\right)$ <br> M1: A fully correct method (may be implied by a final answer of awrt $0.705 r^{2}$ ) <br> A1: Correct exact expression - for this to be scored $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ must be seen | M1A1 |
|  | $=\frac{1}{2} \pi r^{2}-\frac{\sqrt{3}}{2} r^{2}=r^{2}\left(\frac{1}{2} \pi-\frac{\sqrt{3}}{2}\right) \quad \begin{aligned} & \text { Cso (Allow } \frac{r^{2}}{2}(\pi-\sqrt{3}) \text { or any exact } \\ & \begin{array}{l} \text { equivalent with } r^{2} \text { taken out as a } \\ \text { common factor) } \end{array} \end{aligned}$ | A1 |
|  |  | (5 marks) |

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

