

ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2009

Mathematics

Assessment Unit M1 assessing Module M1: Mechanics 1

[AMM11]

TUESDAY 13 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all eight** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them. Take $g = 9.8 \text{ m s}^{-2}$, unless specified otherwise.

A copy of the Mathematical Formulae and Tables booklet is provided.

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Four forces 5 N, 8 N, P N and Q N are in equilibrium and act at a point as shown in Fig. 1 below.

The 5 N and *P* N forces are perpendicular.

Fig. 1

Find *P* and *Q*.

A van is travelling along a straight horizontal road with an acceleration of 0.5 m s⁻²
When the van passes a point A its velocity is 10 m s⁻¹
It reaches a point B 1 minute later.

(i) Find the distance AB.	[3]
The van's mass is 1000kg and its engine exerts a force of 5500N.	

(ii) Find the resistance to the van's motion. [4]

2 www.StudentBounty.com Homework Help & Pastpapers [6]

- 3 A ball of mass 0.2 kg falls vertically and strikes horizontal ground with a speed of 8 m s^{-1} The ball rebounds vertically with a speed of 6 m s^{-1}
 - (i) Find the impulse exerted on the ball by the ground during the impact. [4]
 - (ii) If the impact lasted for 0.01 s, find the magnitude of the average force exerted by the ground on the ball. [2]
- 4 Fig. 2 below shows a box of mass *m* kg resting in equilibrium on a rough plane inclined at θ° to the horizontal, where $\sin \theta = \frac{3}{5}$

The coefficient of friction between the box and the plane is μ .

Fig. 2

The box is on the point of slipping down the plane.

(i) Draw a diagram showing all the external forces acting on the box. [2]

(**ii**) Find *μ*.

[6]

A particle P moves along a straight horizontal line passing through a fixed point O at 5 time t = 0 seconds.

At time t its displacement s metres, from O, is given by

$$s = t^3 - 6t^2 + 9t$$

	(i) Find the velocity of P in terms of <i>t</i> .	[2]
	(ii) Find the acceleration of P in terms of <i>t</i> .	[2]
	(iii) Hence find the time when P attains its minimum velocity.	[3]
6	A car has an initial velocity of 20 m s^{-1} For the first 4 seconds of its motion it accelerates at 2.5 m s^{-2} For the next <i>T</i> seconds it travels at a constant velocity of $V \text{ m s}^{-1}$ The car then decelerates to rest.	
	(i) Sketch a velocity-time graph for the whole journey of the car.	[3]
	(ii) Find <i>V</i> .	[2]
	The total time for the journey is 40 seconds.	
	(iii) If the total distance travelled by the car is 1090 m, find <i>T</i> .	[7]

7 A uniform ladder AB, of length 6 m and mass 30 kg, rests with its end A against a smooth vertical wall.

Its end B rests on rough horizontal ground as shown in **Fig. 3** below. The ladder makes an angle of 60° with the horizontal.

The coefficient of friction between the ladder and the ground is 0.5

Fig. 3

A man of mass 100 kg ascends the ladder.

- (i) Draw a diagram which shows all the external forces acting on the ladder. [2]
- (ii) Find how far up the ladder, from B, the man can ascend before the ladder begins to slip.

8 A light inextensible string passes over a smooth fixed pulley as shown in **Fig. 4** below. A block of mass 6kg is attached to one end of the string and a block of mass 4kg is attached to the other end.

When t = 0 s the system is released from rest with the 6 kg mass 2 m above ground level.

(i) Find the acceleration of the system.	[5]
The 4 kg mass does not strike the pulley in any subsequent motion.	
(ii) Find the velocity with which the 6kg mass hits the ground.	[2]
(iii) Find the value of t when the 6 kg mass hits the ground.	[3]
(iv) Find the value of t when the string becomes taut again.	[7]

THIS IS THE END OF THE QUESTION PAPER

www.StudentBounty.com Homework Help & Pastpapers

S - 11/07 - 935-012-1

www.StudentBounty.com Homework Help & Pastpapers