READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Take the weight of 1.0 kg to be 10 N (acceleration of free fall = 10 m/s²).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
Question 6(a) should read:

Fig. 6.1 is a diagram of the inside of an electric oven. The diagram shows a side view of the oven.
Fig. 1.1 shows a set of masses made from the same material.

(a) Identify the quantity that is the same for all the masses.

Tick one box.

- density
- volume
- weight

(b) The largest mass is 2.5 kg.

State the number of grams in 2.5 kg.

\[2.5 \text{ kg} = \text{ .. g} \] [1]

(c) The three largest masses are 2.5 kg, 1.0 kg and 0.5 kg.

Calculate the combined weight of these three masses. Include the unit.

\[\text{weight} = \text{ ...} \] [4]

[Total: 6]
2 Fig. 2.1 shows students getting onto a school bus.

![Fig. 2.1](image)

(a) A student describes part of the journey.

- The bus accelerates from rest at a constant rate for 10 s. It reaches a maximum speed of 10 m/s.
- The bus maintains a constant speed of 10 m/s for 60 s.
- The bus then decelerates at a constant rate for 15 s, until it stops.

On Fig. 2.2, draw the speed-time graph for this part of the journey made by the bus.

![Fig. 2.2](image)

(b) On another part of the journey, the average speed of the bus is 7.5 m/s.

Calculate the distance the bus travels in 150 s.

\[
\text{distance} = \text{... m} \quad [3]
\]

[Total: 8]

[Turn over]
A load is attached to a spring, as shown in Fig. 3.1. Two arrows indicate the vertical forces acting on the load. The spring and the load are stationary.

Fig. 3.1

(a) (i) State the name of the force acting vertically downwards.

... [1]

(ii) The vertical force that acts upwards is 4.0 N.

State the value of the force acting vertically downwards.

force = ... N [1]

(b) The load is pulled downwards and then released. The load moves up and down.

Fig. 3.2 represents the vertical forces acting on the load at some time after it is released.

Fig. 3.2

Calculate the resultant force on the load and state its direction.

resultant force = ... N

direction = .. [2]
(c) (i) State the principle of conservation of energy.

... [1]

... [1]

(ii) Eventually the load stops moving up and down.

Describe and explain why the load stops moving. Use your ideas about conservation of energy.

... [2]

... [2]

... [2]

[Total: 7]
Fig. 4.1 shows a truck lifting a heavy load.

(a) (i) The truck is stationary. Identify the quantities that determine the work done as it lifts the load.

Tick the box next to each correct quantity.

- distance
- force
- time [1]

(ii) Draw a ring around the unit for work done from the list.

- joule
- newton
- pascal
- watt [1]

(b) Identify the quantities that determine the power of the truck.

Tick the box next to each correct quantity.

- energy transferred
- temperature
- time [1]
(c) The truck has a pivot near the front wheel. Fig. 4.2 represents the pivot and the vertical forces acting on the truck.

![Fig. 4.2](image)

The truck is in equilibrium.

Calculate the load.

\[
\text{load} = \text{...} \quad \text{N} \quad [3]
\]

(d) Fig. 4.3 shows another truck lifting a pile of identical bricks.

![Fig. 4.3](image)

(i) On Fig. 4.3, draw a cross to indicate the centre of mass of the pile of bricks. \[1\]

(ii) The truck can tilt the pile of bricks backwards, as shown in Fig. 4.4.

![Fig. 4.4](image)

Explain how tilting the pile of bricks backwards makes the truck more stable.

...
...
...
... \[1\]

[Total: 8]

[Turn over]
Fig. 5.1 shows part of a solar farm. The solar panels tilt and rotate.

(a) The solar farm converts energy from a source into a different, useful form of energy.

State the energy source and the useful form of energy.

source ...

useful form of energy .. [2]

(b) Solar farms have advantages and disadvantages.

(i) State two advantages of a solar farm.

1. ... [2]

2. ... [2]

(ii) State one disadvantage of a solar farm.

... [1]

(c) Suggest why it is useful that the panels can tilt and rotate.

... [1]

... [1]

[Total: 6]
6 (a) Fig. 6.1 shows a cross-section of the inside of an electric oven.

The heater is switched on.

(i) On Fig. 6.1, draw two arrows to show how thermal energy moves throughout the oven by convection. [2]

(ii) Explain how thermal energy moves throughout the oven by convection. Use your ideas about density and expansion.

...
...
...
.. [3]

(iii) Use a word from the box to complete the sentence.

<table>
<thead>
<tr>
<th>conduction</th>
<th>expansion</th>
<th>insulation</th>
<th>radiation</th>
</tr>
</thead>
</table>

Thermal energy travels at the speed of light by ... [1]

(b) The oven is in a kitchen that is fitted with a smoke detector.

Warm, moving air can carry smoke particles.

Suggest the best position for the smoke detector in the kitchen.

... [1]

[Total: 7]
7 Light and sound both travel as waves.

Draw a line from each statement to the correct term that describes it. One has been done for you.

<table>
<thead>
<tr>
<th>statement</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>change in direction of light when entering a medium</td>
<td>amplitude</td>
</tr>
<tr>
<td>very high frequency sounds</td>
<td>dispersion</td>
</tr>
<tr>
<td>a glass prism producing a spectrum</td>
<td>diffraction</td>
</tr>
<tr>
<td>light spreading after passing through a narrow gap</td>
<td>longitudinal</td>
</tr>
<tr>
<td>sound reflecting from a wall</td>
<td>refraction</td>
</tr>
<tr>
<td>seven colours of light</td>
<td>spectrum</td>
</tr>
<tr>
<td></td>
<td>ultrasound</td>
</tr>
</tbody>
</table>

[5]

[Total: 5]
8 (a) Fig. 8.1 shows an incomplete diagram of the electromagnetic spectrum.

<table>
<thead>
<tr>
<th>更高频率</th>
<th>ultraviolet</th>
<th>visible light</th>
<th>更长波长</th>
</tr>
</thead>
</table>

Fig. 8.1

Complete Fig. 8.1 with the names of the missing types of radiation in the correct boxes. [4]

(b) State one use for ultraviolet radiation.

... [1]

[Total: 5]
Fig. 9.1 and Fig. 9.2 each show an electrical circuit. Each circuit has two lamps connected to an electrical supply.

(a) State the term used to describe each electrical circuit. Write the term under each circuit. [2]

(b) State two disadvantages of the circuit in Fig. 9.2.

1. ...
2. ... [2]

(c) Redraw the circuit in Fig. 9.1 with switches that will turn lamps X and Y on and off independently of each other.
(d) Fig. 9.3 shows another circuit.

The lamps can be turned on and off using two different switches \(S_1 \) and \(S_2 \).

Complete the table stating when the lamps are on or off. The first one has been done for you.

<table>
<thead>
<tr>
<th>switch positions</th>
<th>lamps on or off</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>(S_2)</td>
</tr>
<tr>
<td>K Z</td>
<td>off</td>
</tr>
<tr>
<td>K W</td>
<td></td>
</tr>
<tr>
<td>J W</td>
<td></td>
</tr>
<tr>
<td>J Z</td>
<td></td>
</tr>
</tbody>
</table>

[3]

[Total: 9]
10 Fig. 10.1 shows the apparatus for an experiment on electrostatics.

(a) Identify the pieces of equipment that are electrical conductors and those that are electrical insulators. Draw a line from each piece of equipment to the correct box.

- aluminium clamp and stand
- plastic stirrup
- iron nail
- cotton thread

(b) State and explain how the polythene strip can be given a negative charge.

...
...
... [2]

(c) Describe how the apparatus in Fig. 10.1 could be used to demonstrate that the polythene strip has a negative charge.

...
...
... [2]

[Total: 5]
Fig. 11.1 shows a relay.

(a) The statements describe the action of a relay. They are not in the correct order.

P Current in the coil creates an electromagnet.
Q Secondary circuit is completed.
R Armature pivots, closing the contacts.
S Part C attracts the armature.
T The switch in the primary circuit is closed.

Place the statements in the correct order. One has been done for you.

S [3]

(b) Fig. 11.1 includes the part labelled C, which is made from a metal.

State the name of the metal and explain why this metal is used in the electromagnet.

metal ...
explanation ..
...

...

[2]

[Total: 5]
12 Astatine-210 is a radioactive material. The nucleus of astatine can be represented by the symbol shown.

\[^{210}_{85}\text{At} \]

(a) Complete the table to describe the nucleus of astatine-210.

<table>
<thead>
<tr>
<th>type of particle</th>
<th>number of particles</th>
<th>charge on particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutron</td>
<td></td>
<td>positive</td>
</tr>
</tbody>
</table>

(b) Astatine-210 has a half-life of 8 hours.

(i) The count rate of a sample of astatine-210 is measured over 24 hours.

On Fig. 12.1, sketch a line to show how the count rate changes over the 24 hours.

(ii) The mass of a sample of astatine-210 is 0.500 kg.

Calculate how long it takes for 0.375 kg of the sample to decay.

decay time = ... hours [3]