READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. If working is needed for any question it must be shown below that question. Electronic calculators should be used. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 130.
1 (a) One day, Maria took 27 minutes to walk 1.8 km to school. She left home at 0748.

(i) Write down the time Maria arrived at school.

Answer(a)(i) .. [1]

(ii) Show that Maria’s average walking speed was 4 km/h.

Answer(a)(ii)

(b) Another day, Maria cycled the 1.8 km to school at an average speed of 15 km/h.

(i) Calculate the percentage increase that 15 km/h is on Maria’s walking speed of 4 km/h.

Answer(b)(i) .. % [3]

(ii) Calculate the percentage decrease that Maria’s cycling time is on her walking time of 27 minutes.

Answer(b)(ii) .. % [3]
(iii) After school, Maria cycled to her friend’s home. This took 9 minutes, which was 36% of the time Maria takes to walk to her friend’s home.

Calculate the time Maria takes to walk to her friend’s home.

Answer(b)(iii) .. min [2]
(a) Complete the tables of values for \(f(x) \) and \(g(x) \).

\[
\begin{array}{c|cccccccc}
 x & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 \\
 \hline
 f(x) & 2.25 & 3 & 3.25 & 2.25 & 1 & -0.75 \\
\end{array}
\]

\[
\begin{array}{c|cccccccc}
 x & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 \\
 \hline
 g(x) & 0.19 & 0.58 & 1.73 & 3 & 5.20 \\
\end{array}
\]

(b) On the grid, draw the graphs of \(y = f(x) \) and \(y = g(x) \) for \(-1.5 \leq x \leq 1.5\).
(c) For \(-1.5 \leq x \leq 1.5\), use your graphs to solve

(i) \(f(x) = 0\),

\[Answer(c)(i) \ x = \]\[1\]

(ii) \(g(x) = 4\),

\[Answer(c)(ii) \ x = \]\[1\]

(iii) \(f(x) = g(x)\).

\[Answer(c)(iii) \ x = \]\[1\]

(d) By drawing a suitable tangent, find an estimate of the gradient of the graph of \(y = f(x)\) when \(x = 0.5\).

\[Answer(d) \]\[3\]
3 200 students estimate the mass (m grams) of a coin. The cumulative frequency diagram shows the results.
(a) Find

(i) the median,

\[\text{Answer}(a)(i) \] \[g \] [1]

(ii) the upper quartile,

\[\text{Answer}(a)(ii) \] \[g \] [1]

(iii) the 80th percentile,

\[\text{Answer}(a)(iii) \] \[g \] [1]

(iv) the number of students whose estimate is \(7\) g or less.

\[\text{Answer}(a)(iv) \] [1]

(b) (i) Use the cumulative frequency diagram to complete the frequency table.

<table>
<thead>
<tr>
<th>Mass (m grams)</th>
<th>(0 < m \leq 2)</th>
<th>(2 < m \leq 4)</th>
<th>(4 < m \leq 6)</th>
<th>(6 < m \leq 8)</th>
<th>(8 < m \leq 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

[2]

(ii) A student is chosen at random.

The probability that the student estimates that the mass is greater than \(M\) grams is 0.3.

Find the value of \(M\).

\[\text{Answer}(b)(ii) \] \(M = \) [2]
(a) Describe fully the single transformation that maps shape \(Q \) onto shape \(R \).

\[\text{Answer(a) } \]

(b) (i) Draw the image when shape \(Q \) is translated by the vector \(\begin{pmatrix} 5 \\ 4 \end{pmatrix} \).

\[\text{Answer(b)(i) } \]

(ii) Draw the image when shape \(Q \) is reflected in the line \(x = 2 \).

\[\text{Answer(b)(ii) } \]

(iii) Draw the image when shape \(Q \) is stretched, factor 3, \(x \)-axis invariant.

\[\text{Answer(b)(iii) } \]

(iv) Find the \(2 \times 2 \) matrix that represents a stretch of factor 3, \(x \)-axis invariant.

\[\text{Answer(b)(iv) } \]

(c) Describe fully the single transformation represented by the matrix \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).

\[\text{Answer(c) } \]
The table shows information about the heights of a group of 42 students.

(a) Using mid-interval values, calculate an estimate of the mean height of the students. Show your working.

Answer (a) ... cm [3]

(b) Write down the interval which contains the lower quartile.

Answer (b) ... [1]

(c) Complete the histogram to show the information in the table.
One column has already been drawn for you.

<table>
<thead>
<tr>
<th>Height (h cm)</th>
<th>150 < h ≤ 160</th>
<th>160 < h ≤ 165</th>
<th>165 < h ≤ 180</th>
<th>180 < h ≤ 190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5</td>
<td>9</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>
In the diagram, BCD is a straight line and $ABDE$ is a quadrilateral. Angle $BAC = 90^\circ$, angle $ABC = 30^\circ$ and angle $CAE = 52^\circ$. $AC = 15.7\text{ cm}$, $CE = 16.5\text{ cm}$ and $CD = 23.4\text{ cm}$.

(a) Calculate BC.

$$\text{Answer (a)} \quad BC = \ldots \ldots \ldots \ldots \ldots \text{cm} \quad [3]$$

(b) Use the sine rule to calculate angle AEC.
Show that it rounds to 48.57°, correct to 2 decimal places.

$$\text{Answer (b)}$$
(c) (i) Show that angle $ECD = 40.6^\circ$, correct to 1 decimal place.

$Answer(c)(i)$

(ii) Calculate DE.

$Answer(c)(ii) \quad DE = \ldots\ldots\ldots\ldots\ldots\ldots\ldots\text{cm} \quad \quad [4]$

(d) Calculate the area of the quadrilateral $ABDE$.

$Answer(d) \quad \ldots\ldots\ldots\ldots\ldots\ldots\ldots\text{cm}^2 \quad \quad [4]$
In triangle ABC, $AB = (x + 2)$ cm and $AC = (2x + 3)$ cm.

$\sin \angle ACB = \frac{9}{16}$

Find the length of BC.

$Answer(a) \ BC = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ cm$ [6]

(b) A bag contains 7 white beads and 5 red beads.

(i) The mass of a red bead is 2.5 grams more than the mass of a white bead.

The total mass of all the 12 beads is 114.5 grams.

Find the mass of a white bead and the mass of a red bead.

$Answer(b)(i) \ White \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ g$

Red $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ g$ [5]
(ii) Two beads are taken out of the bag at random, without replacement.

Find the probability that

(a) they are both white,

(b) one is white and one is red.

Answer (b)(ii)(a) ... [2]

Answer (b)(ii)(b) ... [3]
In the pentagon $ABCDE$, angle $EAB = angle ABC = 110^\circ$ and angle $CDE = 84^\circ$.

Angle $BCD = angle DEA = x^\circ$.

(i) Calculate the value of x.

$$Answer(a)(i) \ x = \ \ldots \ldots \ldots \ \ldots \ [2]$$

(ii) $BC = CD$.
Calculate angle CBD.

$$Answer(a)(ii) \ \text{Angle } CBD = \ \ldots \ldots \ldots \ \ldots \ [1]$$

(iii) This pentagon also has one line of symmetry.
Calculate angle ADB.

$$Answer(a)(iii) \ \text{Angle } ADB = \ \ldots \ldots \ldots \ \ldots \ [1]$$

(b) A, B and C lie on a circle centre O.
Angle $AOC = 3y^\circ$ and angle $ABC = (4y + 4)^\circ$.

Find the value of y.

$$Answer(b) \ y = \ \ldots \ldots \ldots \ \ldots \ [4]$$
In the cyclic quadrilateral $PQRS$, angle $SPQ = 78^\circ$.

(i) Write down the geometrical reason why angle $QRS = 102^\circ$.

$Answer(c)(i)$... [1]

(ii) Angle PRQ: Angle $PRS = 1:2$.

Calculate angle PQS.

$Answer(c)(ii)$ Angle $PQS =$ [3]

(d)

The diagram shows two similar figures.
The areas of the figures are $5\, \text{cm}^2$ and $7.2\, \text{cm}^2$.
The lengths of the bases are $l\, \text{cm}$ and $6.9\, \text{cm}$.

Calculate the value of l.

$Answer(d)\ l = $ [3]
9 \hspace{1cm} f(x) = x^2 + x - 3 \hspace{1cm} g(x) = 2x + 7 \hspace{1cm} h(x) = 2^x

(a) Solve the equation \(f(x) = 0 \).
Show all your working and give your answers correct to 2 decimal places.

\[
\text{Answer (a)} \ x = \ldots \text{ or } x = \ldots [4]
\]

(b) \(f g(x) = px^2 + qx + r \)

Find the values of \(p, q \) and \(r \).

\[
\text{Answer (b)} \ p = \ldots \hspace{1cm} q = \ldots \hspace{1cm} r = \ldots [3]
\]
(c) Find $g^{-1}(x)$.

\[\text{Answer (c)} \quad g^{-1}(x) = \]

[2]

(d) Find x when $h(x) = 0.25$.

\[\text{Answer (d)} \quad x = \]

[1]

(e) Find $h(h(h(3)))$.

Give your answer in standard form, correct to 4 significant figures.

\[\text{Answer (e)} \]

[4]
The diagrams show a sequence of stars made of lines and dots.

(a) Complete the table for Star 5, Star 7 and Star n.

<table>
<thead>
<tr>
<th></th>
<th>Star 1</th>
<th>Star 2</th>
<th>Star 3</th>
<th>Star 4</th>
<th>Star 5</th>
<th>Star 7</th>
<th>Star n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lines</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of dots</td>
<td>11</td>
<td>21</td>
<td>31</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) The sums of the number of dots in two consecutive stars are shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Star 1 and Star 2</th>
<th>Star 2 and Star 3</th>
<th>Star 3 and Star 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>52</td>
<td>72</td>
</tr>
</tbody>
</table>

Find the sum of the number of dots in

(i) Star 10 and Star 11,

$Answer(b)(i)$... [1]

(ii) Star n and Star $(n + 1)$,

$Answer(b)(ii)$... [1]

(iii) Star $(n + 7)$ and Star $(n + 8)$.

$Answer(b)(iii)$... [1]
(c) The total number of dots in the first \(n \) stars is given by the expression \(5n^2 + 6n \).

(i) Show that this expression is correct when \(n = 3 \).

\[\text{Answer (c)(i)} \]

(ii) Find the total number of dots in the first 10 stars.

\[\text{Answer (c)(ii)} \quad [1] \]

(d) The total number of dots in the first \(n \) stars is \(5n^2 + 6n \).

The number of dots in the \((n + 1)\)th star is \(10(n + 1) + 1 \).

Add these two expressions to show that the total number of dots in the first \((n + 1)\) stars is

\[5(n + 1)^2 + 6(n + 1) \]

You must show each step of your working.

\[\text{Answer (d)} \]